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Language is our main communication tool. Deep understanding of its evolution
is imperative for many related research areas including history, humanities, social
sciences, etc. as well as for effective temporal information retrieval. To this end, we
are interested in the task of segmenting long-term document corpora into naturally
coherent periods based on the embodied evolving word semantics. There are many
benefits of such segmentation including better representation of content in long-
term document collections and support for modeling and understanding semantic
drift. We propose a two-step framework for learning time-aware word semantics
and periodizing document archive. The effectiveness of our model is demonstrated
on the New York Times corpus spanning from 1990 to 2016.

1 Introduction

Language is an evolving and dynamic construct. Awareness of the necessity and
possibilities of large scale analysis of the temporal dynamics on linguistic phe-
nomena has increased considerably in the last decade (Zhang et al. 2015, Yao et al.
2018, Tahmasebi et al. 2021). Temporal dynamics play an important role in many
time-aware information retrieval (IR) tasks. For example, when retrieving docu-
ments based on their embeddings, one needs accurate representations of content
by temporal embedding vectors.
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It is intuitive that if an IR system is required to effectively return information
from a target time period 𝑇𝑎 , it may fail to do so if it is unable to capture the
change in context between 𝑇𝑎 and the current time, or just another time period
in the past 𝑇𝑏 . To which extent is the context of 𝑇𝑎 different from that of 𝑇𝑏? Are
there any turning points in the interval between 𝑇𝑎 and 𝑇𝑏 when a significant
context change occurred, or do 𝑇𝑎 and 𝑇𝑏 belong to the same stage in the evolv-
ing process of language rather? The capability of answering such questions is
crucial for effective IR systems when coping with time-aware tasks. However,
to the best of our knowledge, the research problem of distinguishing key stages
in the evolution’s trajectory of language still remains a challenge in the field of
temporal IR.

Traditionally, a language’s diachrony is segmented into pre-determined peri-
ods (e.g., the “Old”, “Middle” and “Modern” eras for English) (Schätzle & Booth
2019), which is problematic, since such an approach may yield results conceal-
ing the true trajectory of a phenomenon (e.g., false assumption on abrupt turn-
ing point about the data). Moreover, these traditional segments are very coarse
and can be easily obscured and derived from arbitrary and non-linguistic fea-
tures (Degaetano-Ortlieb & Teich 2018). Thanks to accumulated large amounts
of digitized documents from the past, it is now possible to employ large scale
data-driven analyses for uncovering patterns of language change. Thus, in-
stead of blindly adopting a pre-determined periodization scheme, data-driven ap-
proaches, which reflect actual changes in the data, and which are able to achieve
meaningful generalizations, can be applied. This can not only help with evolu-
tionary linguistic studies by providing data-driven evidence, but could also sup-
port better understanding of variations in performance of diverse temporal IR
systems on different periods of a temporal document collection. Furthermore, au-
tomatic periodization can be also beneficial for many less-researched languages
for which there may not be a sufficient number of historical linguistics-oriented
studies and findings.

In this study, we design a data-driven approach for segmenting a temporal
document collection (e.g., a long-term news article archive) into natural, linguis-
tically coherent periods, thanks to which we can both capture the features in-
volved in diachronic linguistic change, as well as identify the time periods when
the changes occurred. Our approach is generic and can be applied to any di-
achronic data set. The detected periods could then be applied in diverse temporal
IR scenarios, such as temporal analog retrieval and archival document recommen-
dation.

Ourmethod is based on the computation of dynamic word embeddings needed
to properly represent changing word semantics. Semantic senses of words are
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subject to broadening, narrowing, or other kinds of shifts throughout time. For in-
stance, Amazon originally referred to mythical female warriors (in ancient Greek
mythology), while it assumed a new sense of a large e-commerce company since
the mid 1990s.

Additionally, different words may become conceptually equivalent or similar
across time. For example, a music deviceWalkman played a similar role of mobile
music playing device 30 years ago as iPod plays nowadays. The phenomenon of
evolving word semantics is however rarely considered in the existing corpus
periodization schemes.

In this paper, we structure document collections by periodizing the evolving
word semantics embodied in the corpus. Specifically, for a long-term document
corpus, our goal is to split the entire time span into several consecutive periods,
where within the same period most words do not undergo significant fluctua-
tions in term of their senses, while linguistic shifts are on the other hand rela-
tively prevalent across different periods. In other words, a word is represented
by a constant vector within one period, while it may have fairly different repre-
sentations in different periods (see Figure 8.1).

Figure 8.1: Conceptual view of our task. Our goal is to identify latent
periods in the input document collection, such that word semantics are
relatively stable within the same period (i.e., a word is represented by
the same embedding vector), and major linguistic shifts exist between
different periods (i.e., a word may be represented by fairly different
vectors in different periods).
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The problem of document collection periodization based on evolving word
semantics is however not trivial. In order to solve this problem, we address the
following two research questions:

a. How to compute temporal-aware word embeddings?

b. How to split the document collection based on learned word embeddings?

Our main technical contribution lies in a two-step framework for answering
the above questions. First of all, we develop an anchor-based joint matrix fac-
torization framework for computing time-aware word embeddings. More specif-
ically, we concurrently factorize the time-stamped PPMI (positive pointwise mu-
tual information) matrices, during which we utilize shared frequent terms (see
Section 3) as anchors for aligning the word embeddings of each time frame to the
same latent space. Furthermore, a block coordinate descent method is adopted
to solve the learning model efficiently. Secondly, we formulate the periodization
task as an optimization problem, where we aim to maximize the aggregation of
differences between the word semantics of any two periods. To solve this prob-
lem, we employ three classes of optimization algorithms which are based on
greedy splitting, dynamic programming and iterative refinement, respectively.

In the experiments, we use the crawled and publicly released New York Times
dataset (Yao et al. 2018), which contains a total of 99,872 articles published be-
tween January 1990 and July 2016. We compare the performance of our models
with existing competitive temporal word embedding methods, and corpus peri-
odization methods, respectively. To demonstrate the quality of our learned tem-
poral word embeddings, we focus on the task of searching for temporal analogs
(see Section 5). To evaluate the periodization effectiveness, we construct the test
sets by utilizing New York Times article tags (see Section 6), and evaluate the
analyzed methods based on two standard metrics: Pk (Beeferman et al. 1999) and
WinDiff (Pevzner & Hearst 2002) used in text segmentation tasks.

In summary, our contributions are as follows:

• From a conceptual standpoint, we introduce a novel research problem of
periodizing diachronic document collections for discovering the embod-
ied evolutionary word semantics. The discovered latent periods and corre-
sponding temporal word embeddings can be utilized for many objectives,
such as tracking and analyzing linguistic and topic shifts over time.

• From a methodological standpoint, we develop an anchor-based joint ma-
trix factorization framework for computing time-aware word embeddings,
and three classes of optimization techniques for document collection peri-
odization.
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• We perform extensive experiments on the New York Times corpus, which
demonstrate the effectiveness of our approaches.

2 Problem definition

We start by presenting the formal problem definition.

2.1 Input

The input is a set of documents published across time. Each document is time-
stamped and the whole text corpus spanning over a certain range of time is split
into 𝑁 basic time frames (𝑡1, 𝑡2, ..., 𝑡𝑁 ). The length of a time frame can be on the
order of months, years, decades or centuries. Formally, let 𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑁 }
denote the entire document set where 𝐷𝑥 , 𝑥 = 1, ..., 𝑁 represents the subset of
documents belonging to the time frame 𝑡𝑥 .

2.2 Task 1

Our first task is to find a 𝑑-dimensional embedding vector for each term in the
overall corpus vocabulary 𝑉 = {𝑤1, ..., 𝑤|𝑉 |},1 for each time unit 𝑡𝑖, 𝑖 = 1, ..., 𝑁 ,
respectively. We denote by 𝐴𝑖 the embedding matrix for 𝑡𝑖, whose 𝑗-th row rep-
resents the 𝑑-dimensional embedding vector of 𝑗-th term 𝑤𝑗 in 𝑉 . Thus 𝐴𝑖 is of
size |𝑉 | × 𝑑 .

2.3 Task 2

Based on Task 1, our second goal is to split the text corpus 𝐷 into 𝑚 contiguous,
disjoint and coherent periods Θ = (𝑃1, 𝑃2, ..., 𝑃𝑚) and compute their correspond-
ing word embedding matrices 𝐸𝑖, 𝑖 = 1, ..., 𝑚. Note that in this study the value of
𝑚 is pre-defined. Each period 𝑃𝑖 = [𝜏 𝑖𝑏 , 𝜏 𝑖𝑒], 𝑖 = 1, ..., 𝑚 is expressed by two time
points representing its beginning date 𝜏 𝑖𝑏 and the ending date 𝜏 𝑖𝑒 , with 𝜏1𝑏 = 𝑡1 and
𝜏𝑚𝑒 = 𝑡𝑁 . Let 𝐿(Θ) = (𝜏1𝑏 , 𝜏2𝑏 , ..., 𝜏𝑚𝑏 ) denote the list of beginning dates of 𝑚 periods,
where 𝜏1𝑏 = 𝑡1. Notice that searching for Θ is equivalent to discovering 𝐿(Θ).

1The overall vocabulary 𝑉 is the union of vocabularies of each time unit, and thus it is possible
for some 𝑤 ∈ 𝑉 to not appear at all in some time units. This includes emerging words and
dying words that are typical in real-world news corpora.
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3 Temporal word embeddings

In this section, we describe our approach for computing dynamic word embed-
dings (solving Task 1 in Section 2), that captures lexical semantic dynamics across
time.

3.1 Learning static embeddings

The distributional hypothesis (Firth 1957) states that semantically similar words
usually appear in similar contexts. Let 𝑣𝑖 denote the vector representing word 𝑤𝑖,
then 𝑣𝑖 can be embodied in the co-occurrence statistics of 𝑤𝑖. In this study we
first factorize the PPMI (positive pointwise mutual information) matrix for con-
structing static (i.e., time-agnostic) word embeddings, following previous works
(Yao et al. 2018, Levy & Goldberg 2014, Hamilton et al. 2016).

For a corpus 𝐷 with vocabulary 𝑉 , the 𝑖, 𝑗-th entry of PPMI matrix (of size
|𝑉 | × |𝑉 |) is given by

PPMI𝑖,𝑗 = max {log2 (
𝑝(𝑤𝑖, 𝑤𝑗)
𝑝(𝑤𝑖)𝑝(𝑤𝑗)

) , 0}

= max {log2 (
𝑐(𝑤𝑖, 𝑤𝑗) ⋅ |𝐷|
𝑐(𝑤𝑖) ⋅ 𝑐(𝑤𝑗)

) , 0}
(1)

where 𝑝(𝑤𝑖, 𝑤𝑗) represents the probability of words 𝑤𝑖 and 𝑤𝑗 co-occurring within
a fixed-size sliding window of text, 𝑐(𝑤𝑖, 𝑤𝑗) counts the number of times that 𝑤𝑖
and 𝑤𝑗 co-occur, and |𝐷| is the total number of word tokens. Discarding the PPMI
values under zero offers much better numerical stability (Yao et al. 2018).

For word vectors 𝑣𝑖 and 𝑣𝑗 , we should have PPMI𝑖,𝑗 ≈ 𝑣𝑖 ⋅ 𝑣𝑗 , thus such word
vectors can be obtained through factorizing the PPMI matrix.

3.2 Learning dynamic embeddings

In order to compute the embedding matrices 𝐸 = 𝐸1, ..., 𝐸𝑚 for a given segmen-
tation Θ on corpus 𝐷, we first construct the embedding matrix 𝐴𝑖, 𝑖 = 1, ..., 𝑁 for
each time unit. We denote PPMI𝑖 the PPMImatrix for time frame 𝑡𝑖, thus temporal
word embeddings 𝐴𝑖 should satisfy PPMI𝑖 ≈ 𝐴𝑖 ⋅ 𝐴𝑇𝑖 .

However, if𝐴𝑖 is constructed separately for each time unit, due to the invariant-
to-rotation nature of matrix factorization these learned word embeddings 𝐴𝑖 are
non-unique (i.e., we have

PPMI𝑖 ≈ 𝐴𝑖 ⋅ 𝐴𝑇𝑖 = (𝐴𝑖𝑊 𝑇 ) ⋅ (𝑊𝐴𝑇𝑖 ) = �̃�𝑖 ̃𝐴𝑇𝑖
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8 Document collection representation by diachronic linguistic periodization

for any orthogonal transformation 𝑊 which satisfies 𝑊 𝑇 ⋅ 𝑊 = 𝐼 ). As a byprod-
uct, embeddings across time frames may not be placed in the same latent space.
Some previous works (Kulkarni et al. 2015, Hamilton et al. 2016, Zhang et al. 2015)
solved this problem by imposing an alignment before any two adjacent matrices
𝐴𝑖 and 𝐴𝑖+1, resulting in 𝐴𝑖 ≈ 𝐴𝑖+1, 𝑖 = 1, ..., 𝑁 − 1.

Instead of solving a separate alignment problem for circumventing the non-
unique characteristic of matrix factorization, we propose to learn the temporal
embeddings across time concurrently. Note that for a word, we desire its vec-
tor to be close among all temporal embedding matrices, if it did not change its
meaning across time (or change its meaning to very small extent). Suchwords are
regarded as “anchors” for connecting various embedding matrices, in our joint
factorization framework.

Essentially, we assume that very frequent terms (e.g., man, sky, one, water) did
not experience significant semantic shifts as their dominant meanings are com-
monly used in everyday life and by many people. This assumption is reasonable
as it has been reported in many languages including English, Spanish, Russian
and Greek (Lieberman et al. 2007, Pagel et al. 2007). We refer to these words as
SFT, standing for shared frequent terms. Specifically, we denote by 𝐴𝑆𝐹𝑇𝑖 the
|𝑉 | × 𝑑 embedding matrix whose 𝑖-th row corresponds to the vector of word 𝑤𝑖
in 𝐴𝑖, if 𝑤𝑖 is a shared frequent term, and corresponds to zero vector otherwise,
for a given time unit 𝑡𝑖. Our joint matrix factorization framework for discovering
temporal word embeddings is then presented as follows (see Figure 8.2 for an
illustration):

𝐴1, ..., 𝐴𝑁 = argmin
A

𝑁
∑
𝑖=1

‖PPMI𝑖 − 𝐴𝑖 ⋅ 𝐴𝑇𝑖 ‖
2
𝐹

+ 𝛼 ⋅
𝑁
∑
𝑖=1

‖𝐴𝑖‖2𝐹 + 𝛽 ⋅
𝑁−1
∑
𝑖=1

𝑁
∑
𝑗=𝑖+1

‖𝐴𝑆𝐹𝑇𝑖 − 𝐴𝑆𝐹𝑇𝑗 ‖2𝐹
(2)

where the key smoothing term ‖𝐴𝑆𝐹𝑇𝑖 − 𝐴𝑆𝐹𝑇𝑗 ‖2𝐹 aligns shared frequent terms in
all years, thus places word embeddings across time in the same latent space. The
regularization term ‖𝐴𝑖‖2𝐹 is adopted to guarantee the low-rank data fidelity for
overcoming the problem of overfitting. Parameters 𝛼 and 𝛽 are used to control
the weight of different terms to achieve the best factorization.
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Figure 8.2: Illustration of our joint matrix factorization model. Shared
frequent terms in all time frames (𝑡1, 𝑡2, ..., 𝑡𝑁 ) are aligned to similar po-
sitions, which places word embeddings across time in the same latent
semantic space.

3.3 Optimization

The optimization problem in Equation (2) is not jointly convex to 𝐴𝑖, 𝑖 = 1, ..., 𝑁 ,
we first decompose the objective across periods, and solve for 𝐴𝑖 by fixing other
embedding matrices as constants at each step. The problem of optimizing 𝐴𝑖 can
be then formulated as follows:

𝐴𝑖 = argmin
A

Ω(𝐴𝑖) = argmin
A

‖PPMI𝑖 − 𝐴𝑖 ⋅ 𝐴𝑇𝑖 ‖
2
𝐹

+ 𝛼 ⋅ ‖𝐴𝑖‖2𝐹 + 𝛽 ⋅
𝑁
∑
𝑗=1

‖𝐴𝑆𝐹𝑇𝑖 − 𝐴𝑆𝐹𝑇𝑗 ‖2𝐹
(3)

Notice that Ω(𝐴𝑖) is quartic in 𝐴𝑖, thus Equation (3) can not be optimized ana-
lytically. We then adopt the block coordinate descent (Tseng 2001) for iteratively
minimizing Ω(𝐴𝑖). Specifically, the gradient of Ω(𝐴𝑖) with regard to 𝐴𝑖 is given
by

𝜕Ω(𝐴𝑖)
𝜕𝐴𝑖

= 2(𝐴𝑖 ⋅ 𝐴𝑇𝑖 − PPMI𝑖 + 𝛼) ⋅ 𝐴𝑖 + 2𝛽 ⋅
𝑁
∑
𝑗=1

(𝐴𝑆𝐹𝑇𝑖 − 𝐴𝑆𝐹𝑇𝑗 ) (4)

where each above computation is of the order 𝑂(nnz(PPMI𝑖)𝑑 + 𝑑2𝑉 ) where
nnz(PPMI𝑖) is the number of non-zeros in the matrix.
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4 Document collection periodization

In this section, we prescribe how to obtain the final periods (solving Task 2 in
Section 2). We first introduce the scoring objective of linguistic periodization,
then we study the effectiveness of three optimization approaches: (1) greedy al-
gorithm based periodization, which searches for the best available boundary at
each step; (2) dynamic programming based periodization, which is able to dis-
cover the optimal periods in a dynamic programming manner; (3) an iterative
refinement scheme, which iteratively refines the boundaries for improving the
performance of the greedy strategy.

4.1 Scoring

To frame the periodization problem as a form of optimization, having built a par-
ticular segmentation Θ, we now specify the way to quantify the quality of Θ,
and then adopt different classes of techniques to optimize that scoring objective.
In general, we prefer the embedding matrices of different periods to be charac-
terized by high inter-dissimilarity. More explicitly, the objective Obj(Θ) for an
overall segmentation is given by aggregating the dissimilarity (expressed by the
squared F-norm of the difference of two embedding matrices) between all pairs
of period-specific embedding matrices, as follows:

Obj(Θ) = Obj(𝐿(Θ)) =
𝑚−1
∑
𝑖=1

𝑚
∑
𝑗=𝑖+1

‖𝐸𝑖 − 𝐸𝑗 ‖2𝐹 (5)

Here, 𝑚 is the pre-defined number of periods. 𝐸𝑖 is measured as the average of
embeddings 𝐴𝑡 for time unit 𝑡 in period 𝑃𝑖 = [𝜏 𝑖𝑏 , 𝜏 𝑖𝑒], as follows:

𝐸𝑖 = 1
𝜏 𝑖𝑒 − 𝜏 𝑖𝑏 + 1

𝜏 𝑖𝑒
∑
𝑡=𝜏 𝑖𝑏

𝐴𝑡 (6)

The segmentation that achieves the highest score of Equation (5) will be adopted.

4.2 Periodizing

4.2.1 Greedy algorithm based periodization

The greedy periodization algorithm is not guaranteed to reach the optimal split-
ting, however it offers significant computational benefit. At each step, it greedily
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inserts a new boundary (which is the beginning date of a new period) to the ex-
isting segmentation to locally maximize the objective function, until desired 𝑚
periods are discovered. The process of greedy periodization is formulated as fol-
lows:

𝐿(Θ)𝑖+1 = arg max Obj(𝐿(Θ)𝑖 ∪ {𝑡𝑝})
𝑡𝑝∈[𝑡1,𝑡𝑁 ],𝑡𝑝∉𝐿(Θ)𝑖

(7)

where 𝐿(Θ)𝑖 denotes the list of boundaries (or the beginning dates of periods)
at the 𝑖-th step, and 𝐿(Θ)0 = {𝑡1}. The process of greedy algorithm based peri-
odization is shown in Algorithm 1.

Algorithm 2: Greedy algorithm based periodization

input :𝐿(Θ)0; 𝑚
output :𝐿(Θ)𝑚−1

1 for 𝑖 ← 0 to 𝑚 − 2 do
2 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0;
3 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 0;
4 for 𝑡𝑝 ← 𝑡1 to 𝑡𝑁 do
5 ▷ Find the best local boundary;
6 if 𝑡𝑝 ∈ 𝐿(Θ)𝑖 then
7 continue
8 end
9 𝑠𝑐𝑜𝑟𝑒 ← Obj(𝐿(Θ)𝑖 ∪ {𝑡𝑝});
10 if 𝑠𝑐𝑜𝑟𝑒 > 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 then
11 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒;
12 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 𝑡𝑝 ;
13 end
14 end
15 𝐿(Θ)𝑖+1 ← 𝐿(Θ)𝑖 ∪ {𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦};
16 end

4.2.2 Dynamic programming based periodization

The core idea of dynamic programming based periodization is to break the overall
problem into a series of simpler smaller segmentation tasks, and then recursively
find the solutions to the sub-problems. By recursively solving the sub-problems
optimally, the dynamic programming approach yields the globally optimal value
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of Equation (5). Let Θ𝑙
𝑘 denote the segmentation of the first 𝑙 time slices of the

entire time span into 𝑘 periods. The computational process of dynamic program-
ming based periodization is then expressed as follows:

𝐿(Θ𝑁
𝑘 ) = arg max Obj(𝐿(Θ𝑙

𝑘−1) ∪ 𝑡𝑙+1)
𝑙<𝑁

(8)

where Θ𝑙1 = [𝑡1, 𝑡𝑙] and 𝐿(Θ𝑙1) = {𝑡1}, 𝑙 = 1, ..., 𝑁 . In practice, though each
of those sub-problems can be solved in one pass by storing their solutions in a
memory-based data structure (array, map, etc), the dynamic programming ap-
proach can be costly to compute, compared to the greedy splitting, as shown
below in Section 4.3. The process of dynamic programming based periodization
is shown in Algorithm 2.

Algorithm 3: Dynamic programming based periodization

input :L(Θ𝑙1), 𝑙 = 1, ..., 𝑁 ; 𝑚
output :𝐿(Θ𝑁𝑚 )

1 for 𝑟𝑜𝑤 ← 2 to 𝑚 do
2 for 𝑐𝑜𝑙 ← 𝑟𝑜𝑤 to 𝑁 do
3 ▷ Recursively find the solutions to the sub-problems;
4 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 0;
5 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 0;
6 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 ← 0;
7 for 𝑗 ← 𝑟𝑜𝑤 − 1 to 𝑐𝑜𝑙 − 1 do
8 𝑠𝑐𝑜𝑟𝑒 ← Obj(𝐿(Θ𝑗

𝑟𝑜𝑤−1) ∪ {𝑡𝑗+1});
9 if 𝑠𝑐𝑜𝑟𝑒 > 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 then
10 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒;
11 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 𝑡𝑗+1;
12 𝑠𝑢𝑏𝑡𝑎𝑠𝑘 ← 𝑗;
13 end
14 end
15 𝐿(Θ𝑐𝑜𝑙𝑟𝑜𝑤 ) ← 𝐿(Θ𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑟𝑜𝑤−1 ) ∪ {𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦}
16 end
17 end

271



Yijun Duan, Adam Jatowt & Masatoshi Yoshikawa

4.2.3 Iterative refinement based periodization

The iterative refinement framework starts with the greedy segmentation. At each
step after the best available boundary is found, a relaxation scheme which tries
to adjust each segment boundary optimally while keeping the edges (i.e. adjacent
boundaries) to either side of it fixed, is applied. This method can improve the per-
formance of the greedy scheme, while at the same time retain its computational
benefit to some extent. Let 𝐿(Θ)𝑖𝐺[𝑗] denote the 𝑗-th element in 𝐿(Θ)𝑖 after the
𝑖-th greedy search step, the iterative refinement process for finding 𝐿(Θ)𝑖[𝑗] is
shown as follows:

𝐿(Θ)𝑖[𝑗] = arg max Obj((𝐿(Θ)𝑖 ⧵ 𝐿(Θ)𝑖𝐺[𝑗]) ∪ {𝑡𝑝})
𝑡𝑝∈(𝐿(Θ)𝑖[𝑗−1],𝐿(Θ)𝑖[𝑗+1])

(9)

The process of this method is shown in Algorithm 3 below.

Algorithm 4: Iterative refinement based periodization

input :𝐿(Θ)0; 𝑚
output :𝐿(Θ)𝑚−1

1 for 𝑖 ← 0 to 𝑚 − 2 do
2 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 , 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝐺𝑟𝑒𝑒𝑑𝑦(𝐿(Θ)𝑖);
3 𝐿(Θ)𝑖+1 ← 𝐿(Θ)𝑖 ∪ {𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦};
4 for 𝑗 ← 1 to 𝑖 do
5 ▷ Iteratively refine the previous boundaries;
6 𝑛𝑒𝑤_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 𝐿(Θ)𝑖+1[𝑗];
7 𝑡𝑏𝑒𝑔𝑖𝑛 ← 𝐿(Θ)𝑖+1[𝑗 − 1];
8 𝑡𝑒𝑛𝑑 ← 𝐿(Θ)𝑖+1[𝑗 + 1];
9 for 𝑡𝑝 ← 𝑡𝑏𝑒𝑔𝑖𝑛 to 𝑡𝑒𝑛𝑑 do
10 𝑠𝑐𝑜𝑟𝑒 ← Obj(𝐿(Θ)𝑖+1 − 𝐿(Θ)𝑖+1[𝑗] ∪ {𝑡𝑝});
11 if 𝑠𝑐𝑜𝑟𝑒 > 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 then
12 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒;
13 𝑛𝑒𝑥𝑡_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ← 𝑡𝑝 ;
14 end
15 end
16 𝐿(Θ)𝑖+1 ← (𝐿(Θ)𝑖+1 − 𝐿(Θ)𝑖+1[𝑗]) ∪ {𝑛𝑒𝑤_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦};
17 end
18 end
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4.3 Analysis of time complexity

For greedy periodization, it requires𝑚−1 steps and the 𝑖-th step calls the scoring
function Equation (5) 𝑁 − 𝑖 times. In total, it is 𝑁𝑚−𝑁 −𝑚2+𝑚/2. In the case of
𝑁 ≫ 𝑚, the greedy periodization algorithm takes 𝑂(𝑁𝑚). For dynamic program-
ming based periodization, it requires 𝑂(𝑁𝑚) states and evaluating each state
involves an 𝑂(𝑁 ) calling of Equation (5). Then the overall algorithm would take
𝑂(𝑁 2𝑚). Finally, for iterative refinement based periodization, an upper bound
on its time complexity is 𝑂(∑𝑚−1

𝑖=1 (𝑁 − 𝑖) ∗ 𝑖) = 𝑂(𝑁𝑚2).

5 Embedding effectiveness

5.1 Datasets

News corpora, which maintain consistency in narrative style and grammar, form
a good basis for studying language evolution. We perform the experiments on
the New York Times Corpus, which has been frequently used to evaluate differ-
ent researches that focus on temporal information processing or extraction in
document archives (Campos et al. 2014). The dataset we use (Yao et al. 2018) is
a collection of 99,872 articles published by the New York Times between Jan-
uary 1990 and July 2016. For the experiments, we first divide this corpus into 27
frames, setting the length of time unit to be 1 year. Stopwords and rare words
(which have less than 200 occurrences in the entire corpus) were removed be-
fore experiments, following previous work (Zhang et al. 2015). The statistics of
our dataset are shown in Table 8.1.

Table 8.1: Summary of the New York Times dataset

#Articles #Vocabulary #Word Co-occurences #Time units Range

99,872 20,936 11,068,100 27 Jan. 1990–Jul. 2016

5.2 Experimental settings

We describe next the parameters used in the experiments. For the construction
of the PPMI matrix, the length of the sliding window and the embedding dimen-
sions is set to be 5 and 50, respectively, following (Yao et al. 2018). During the
training process, the values of parameters 𝛼 and 𝛽 (see Equation (2)) are set to
be 20 and 100, respectively, as the result of a grid search. The selection of shared
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frequent terms (see Section 3.2) used as anchors is set to be the top 5%most popu-
lar words in the entire corpus excluding stopwords, as suggested by (Zhang et al.
2015).

5.3 Compared methods

We describe here the analyzed methods for learning temporal word embeddings.

Without transformation (Non-Tran): This method directly compares the vectors
in different time without performing any transformation.

Linear transformation (LT) (Zhang et al. 2015): The embeddings are first trained
separately for each year, and then are transformed by optimizing a linear
transformation between adjacent years.

Orthogonal transformation (OT) (Hamilton et al. 2016): The embeddings are first
trained separately for each year, and then are aligned by optimizing an
orthogonal transformation between adjacent years.

Dynamic Word2Vec (DW2V) (Yao et al. 2018): The embeddings are trained based
on PPMI matrices by minimizing the distance between embeddings in only
adjacent years, without using SFTs.

The proposed model (this paper): The embeddings are jointly learned, by mini-
mizing the difference between embeddings of shared frequent termswithin
the entire period.

We use the publicly available source code released by (Yao et al. 2018) for all
baseline methods.2

5.4 Test sets

To demonstrate the effectiveness of our model, we focus on the task of searching
for temporal analogs. We utilize 2 testsets (Yao et al. 2018) containing queries
in the base time (e.g., obama in 2012) and their analogs in target time (e.g., bush
in 2002). Testset 1 includes publicly recorded knowledge that for each year lists
different names for a particular role (e.g., U.S. president),3 and testset 2 consists

2https://github.com/yifan0sun/DynamicWord2Vec
3Note that we find several mistakes in this testset, such as (pistons-1990, knicks-1999) (the correct
pair should be (pistons-1990, spurs-1999)). Thenwemanually correct them and use the corrected
version for all analyzed methods in experiment.
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of interesting concepts such as emerging technologies, brands and major events
(e.g., app in 2012 can correspond to software in 1990: Yao et al. 2018). In total,
there are 11,473 pairs of terms (query and its analog) used in our experiments.

5.5 Evaluation metrics

The mean reciprocal rank (MRR) is used for evaluating the search results for
each learning model, which is computed as follows:

MRR = 1
𝑁

𝑁
∑
𝑖=1

1
rank𝑖

(10)

where rank𝑖 is the rank of a correct temporal analog at the 𝑖-th test, and 𝑁 is
the number of test pairs.

In addition, precisions @1, @5, @10 and @20 are also reported. Those metrics
refer to the rates of tests in which the correct temporal analog was included in
the top 1, 5, 10 and 20 results, respectively. All the values of used metrics fall into
[0,1]. The higher the values are, the more effectively a model works.

5.6 Experimental results

Table 8.2: Performance of all analyzed models for learning dynamic
word embeddings.

Testset 1 Testset 2

MRR P@1 P@5 P@10 P@20 MRR P@1 P@5 P@10 P@20

Non-Tran 0.012 0.020 0.034 0.042 0.064 0.005 0.000 0.000 0.018 0.025
LT 0.137 0.118 0.232 0.267 0.355 0.038 0.021 0.065 0.146 0.219
OT 0.158 0.106 0.224 0.295 0.373 0.050 0.023 0.079 0.142 0.185
DW2V 0.422 0.331 0.549 0.619 0.703 0.144 0.076 0.220 0.382 0.487
Our model 0.454 0.348 0.563 0.651 0.740 0.157 0.082 0.255 0.406 0.520

Table 8.2 shows the scores for all themethods averaged on all the tested queries
on testset 1 and testset 2, respectively. We first notice that the performance is ex-
tremely poor without transforming the contexts of queries. The correct answers
in the Non-Tran approach are usually found at ranks> 1k which is in line with ob-
servations made by Zhang et al. (2015). On the other hand, both transformation-
based methods LT and OT are helpful since they exhibit significantly better ef-
fectiveness compared to Non-Tran. This observation suggests little overlap in
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the contexts of news articles which are separated by long time gaps, and that
the task of temporal analog identification is quite difficult. Moreover, it is evi-
dent that learning the temporal embeddings across time by enforcing a global
alignment is superior to following the “separately learning-and-aligning” pat-
tern, since both DW2V and our approach outperform LT and OT significantly.
Therefore, enforcing a global alignment is more effective for solving the temporal
analog detection task.

Lastly, a closer look at Table 8.2 reveals that regardless of the type of evaluation
metric, our model improves upon the performance of the state-of-the-art DW2V
model. Specifically, our method improves DW2V model by 9.0% and 7.6% when
measured using the main metric MRR on testset 1 and testset 2, respectively. The
plausible reason is that DW2V does not differentiate words with stable meanings
from words whose semantics are evolving, while such assumption may lead to a
less precise learned representation of words. By injecting additional knowledge
of shared frequent terms as anchors, our approach allows for only aligning em-
beddings of such stable words, and keeping the representation of other words
exactly as their diachronic contexts express.

6 Periodization effectiveness

6.1 Datasets

We use the same news article datasets as described in Section 5.1.

6.2 Compared methods

We implemented below two types of periodization models as analyzed methods
(proposed methods and baselines) in order to compare the periods they generate
with the reference periods.

6.2.1 Baseline methods

We test four baselines as listed below.

Random: The segment boundaries are randomly inserted.

VNC (Gries & Hilpert 2012): A bottom-up hierarchical variability-based neigh-
bor clustering (VNC) approach to periodization.
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KLD (Degaetano-Ortlieb & Teich 2018): An entropy-driven approach which cal-
culates the Kullback-Leibler Divergence (KLD) between term frequency
features in text from temporally adjacent time periods to identify stages of
language change.

CPD (Kulkarni et al. 2015): An approach which uses statistically sound change
point detection (CPD) algorithms to detect significant linguistic shifts
based on mean shift model.

6.2.2 Proposed methods

We list three proposed methods below (see Section 4.2).
These proposed methods adopt different strategies to optimize Equation (5),

based on the temporal word embeddings obtained in Section 3.

G-WSE: Greedy periodization based on word semantic evolution.

DP-WSE: Dynamic programming periodization based on word semantic evolu-
tion.

IR-WSE: Iterative refinement based on word semantic evolution.

6.3 Test sets

As far as we know there are no standard testsets for New York Time Corpus.
We therefore had to create test sets. Note that the collected news articles dataset
is associated with some metadata, including title, author, publication time, and
topical section label (e.g., Science, Sports, Technology) which describes the general
topic of news articles. Such section labels could be used to locate the boundaries
of word meanings.

Intuitively, if a word 𝑤 is strongly related to a particular section 𝑠 in year 𝑡 , we
associate 𝑤 , 𝑠 and 𝑡 together and construct a ⟨𝑤, 𝑠, 𝑡⟩ triplet. A boundary of 𝑤 is
registered if it is assigned to different sections in two adjacent years (i.e., both
triplet ⟨𝑤, 𝑠, 𝑡⟩ and ⟨𝑤, 𝑠′, 𝑡 + 1⟩ hold and 𝑠 ≠ 𝑠′).

More specifically, for each word 𝑤 in the corpus vocabulary 𝑉 we compute its
frequency in all sections for each year 𝑡 , and 𝑤 is assigned to the section in which
𝑤 is most frequent. Note that this word frequency information is not used in our
learning model. In this study we utilize the 11 most popular and discriminative
sections of the New York Times,4 following previous work (Yao et al. 2018).

4These sections are Arts, Business, Fashion & Style, Health, Home & Garden, Real Estate, Science,
Sports, Technology, U.S., World.
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Recall that parameter 𝑚 denotes the number of predefined latent periods. For
each different 𝑚, we first identify the set of words 𝑆𝑚 characterized by the same
number of periods. Then for each method and each value of𝑚, we test the perfor-
mance of such method by comparing the generated periods with the reference
segments of each word in 𝑆𝑚, and then take the average. In this study, we exper-
iment with the variation in the value of 𝑚, ranging from 2 to 10.

6.4 Evaluation metrics

We evaluate the performance of the analyzed methods with respect to two stan-
dard metrics: Pk (Beeferman et al. 1999) and WinDiff (Pevzner & Hearst 2002)
used in text segmentation tasks. Both metrics use a sliding window of fixed size
𝑘 over the document and compare the newly generated segments with the refer-
ence ones. Here 𝑘 is generally set as follows (Beeferman et al. 1999):

𝑘 = ⌊ #𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡𝑠2 ⋅ #𝑝𝑒𝑟 𝑖𝑜𝑑𝑠 ⌋ − 1 (11)

Specifically, the Pk metric counts the number of disagreements on the probe
elements as follows:

Pk = 1
𝑁 − 𝑘

𝑁−𝑘
∑
𝑖=1

[𝑃hyp(𝑖, 𝑖 + 𝑘) ≠ 𝑃ref(𝑖, 𝑖 + 𝑘)] (12)

where 𝑁 indicates the number of elements (in our case, the number of time
units) and 𝑃(𝑖, 𝑖 + 𝑘) is equal to 1 or 0 according to whether or not both element 𝑖
and 𝑖 + 𝑘 are recognized as being in the same segment in hypothesized segmen-
tation 𝑃hyp and reference segmentation 𝑃ref. Since Pk metric has the disadvan-
tage that it penalizes false positives more severely than false negatives (Alemi &
Ginsparg 2015), the WinDiff metric was introduced. It is defined as follows:

WinDiff = 1
𝑁 − 𝑘

𝑁−𝑘
∑
𝑖=1

[𝑊hyp(𝑖, 𝑖 + 𝑘) ≠ 𝑊ref(𝑖, 𝑖 + 𝑘)] (13)

where 𝑊hyp(𝑖, 𝑖 + 𝑘) and 𝑊ref(𝑖, 𝑖 + 𝑘) each count the number of boundaries be-
tween the time units 𝑖 and 𝑖+𝑘 in generated and reference segments, respectively.
An error is registered if they are different. Both Pk andWinDiff give values in the
range [0, 1]. They are equal to 0 if and only if an algorithm assigns all boundaries
correctly. The lower the scores are, the better the algorithm performs.
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6.5 Evaluation results

Tables 8.3 and 8.4 summarize the Pk andWinDiff scores for each method, respec-
tively. Based on the experimental data we make the following observations.

• The proposedmethods exhibit the overall best performance regarding both
Pk and WinDiff metrics. More specifically, they outperform the best base-
line under 7 of 9 predefined numbers of periods in terms of Pk, and 6 of 9
in terms of WinDiff. This demonstrates the effectiveness of our proposed
periodization frameworks.

• Regarding baseline methods, Random achieves the worst performance as
expected. CPD and KLD show competitive performance under certain set-
tings. CPD gets two wins in terms of Pk, and KLD obtains three wins in
terms of WinDiff.

• DP-WSE is the best performer among all three proposed periodization al-
gorithms. It contributes 6 best performance in terms of Pk, and 5 in terms
of WinDiff. Moreover, when compared to G-WSE and IR-WSE, DP-WSE
shows a 3.79% and 3.24% increase in terms of Pk, and a 7.77% and 6.46%
increase in terms of WinDiff, respectively. This observation is in good
agreement with the theoretical analysis, which states that dynamic pro-
gramming based segmentation sacrifices computational efficiency for the
optimal splitting.

• The operation of iterative refinement indeed improves the performance of
greedy periodization. However, the improvement ismarginal: many results
generated by IR-WSE are similar or identical to those from G-WSE.

7 Related work

7.1 Text segmentation

The most similar task to the document collection periodization is text segmen-
tation. The task of text segmentation is formulated as splitting a chunk of text
into meaningful sections based on their topic continuity, and it has many use-
ful applications in information retrieval, text summarization, etc. Early text seg-
mentation approaches include TextTiling (Hearst 1997) and the C99 algorithm
(Choi 2000), which are based on some heuristics on text coherence using a bag

279



Yijun Duan, Adam Jatowt & Masatoshi Yoshikawa

Table 8.3: Performance comparison using Pk (Lower scores indicate
better performance).

Acronym
Number of periods

2 3 4 5 6 7 8 9 10

Random 0.467 0.474 0.545 0.522 0.542 0.480 0.480 0.480 0.539
VNC 0.385 0.253 0.249 0.290 0.282 0.302 0.302 0.294 0.303
KLD 0.385 0.278 0.244 0.270 0.276 0.278 0.284 0.290 0.304
CPD 0.238 0.234 0.246 0.260 0.282 0.263 0.249 0.299 0.338

G-WSE 0.115 0.201 0.248 0.282 0.300 0.310 0.312 0.292 0.303
DP-WSE 0.115 0.230 0.236 0.251 0.271 0.290 0.291 0.286 0.296
IR-WSE 0.115 0.201 0.244 0.279 0.300 0.304 0.312 0.292 0.303

Table 8.4: Performance comparison using WinDiff (Lower scores indi-
cate better performance).

Acronym
Number of periods

2 3 4 5 6 7 8 9 10

Random 0.467 0.474 0.545 0.478 0.542 0.480 0.480 0.480 0.500
VNC 0.417 0.346 0.396 0.416 0.426 0.434 0.439 0.435 0.388
KLD 0.417 0.343 0.383 0.384 0.428 0.437 0.434 0.430 0.384
CPD 0.414 0.386 0.387 0.394 0.430 0.430 0.430 0.432 0.385

G-WSE 0.383 0.430 0.435 0.449 0.456 0.449 0.447 0.432 0.387
DP-WSE 0.383 0.336 0.387 0.403 0.423 0.422 0.430 0.431 0.388
IR-WSE 0.383 0.405 0.428 0.449 0.456 0.449 0.447 0.421 0.387

of words representation. Furthermore many attempts adopt topic models to in-
form the segmentation task, including Riedl & Biemann (2012), Du et al. (2013).
Alemi & Ginsparg (2015) is a segmentation algorithm based on time-agnostic
semantic word embeddings. Most text segmentation methods are unsupervised.
However, neural approaches have also been explored for domain-specific text
segmentation tasks, such as Sehikh et al. (2017). Many text segmentation algo-
rithms are greedy in nature, such as Choi (2000), Choi et al. (2001). Moving be-
yond the greedy approach, some works search for the optimal splitting for their
own objective using dynamic programming (Utiyama & Isahara 2001, Fragkou
et al. 2004).

Apart from computer scientists, social scientists also have proposed a variety
of methods to break a corpus into coherent sections. Related frameworks include
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those of Ruef (1999), Gries & Hilpert (2008), Alsudais & Tchalian (2016). Some
studies are investigating the temporal topics in various corpora including news
(Allan et al. 2001), historical documents (Duan et al. 2017) or scientific archives
(Blei & Lafferty 2006, Wang & McCallum 2006).

7.2 Temporal word embeddings

How to best represent words with low-dimensional dense vectors has attracted
consistent interest for several decades. Early methods are relying on statisti-
cal models (Lund & Burgess 1996, Blei et al. 2003), while in recent years neu-
ral models such as word2vec (Mikolov et al. 2013) and GloVE (Pennington et
al. 2014) have shown great success in many NLP applications. Moreover, it has
been demonstrated that both word2vec and GloVE are equivalent to factorizing
the PMI matrix (Levy & Goldberg 2014), which motivates our approach.

The above methods assume word representation is time-agnostic. Recently
someworks explored computing time-aware embeddings of words, for analyzing
linguistic change and evolution (Yao et al. 2018, Zhang et al. 2015, Hamilton et al.
2016, Kulkarni et al. 2015, Azarbonyad et al. 2017, Gonen et al. 2020). In order
to compare word vectors across time most works ensure the vectors are aligned
to the same coordinate axes, by solving the least squares problem (Zhang et al.
2015, Kulkarni et al. 2015), imposing an orthogonal transformation (Hamilton et
al. 2016) or jointly smoothing every pair of adjacent time slices (Yao et al. 2018).
Different from the existingmethods, in this studywe inject additional knowledge
by using shared frequent terms as anchors to simultaneously learn the temporal
word embeddings and circumvent the alignment problem.

8 Conclusion

This work approaches a novel task – diachronic document collection periodiza-
tion. The special character of our task allows capturing evolutionary word se-
mantics. The discovered latent periods can be an effective indicator of linguistics
shifts and evolution embodied in analyzed diachronic textual corpora. To address
the introduced problem we propose a two-step framework which consists of a
joint matrix factorization model for learning dynamic word embeddings, and a
well-defined optimization formulation for corpus periodization. For solving the
resulting optimization problem we develop a series of effective algorithms. We
perform extensive experiments to evaluate generated periods on the New York
Times corpus spanning from 1990 to 2016, and show that our proposed methods
perform favorably against diverse competitive baselines.
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In the future, we plan to incorporate causal analysis for detecting correlated
word semantic changes. We will also consider utilizing word sentiments in cor-
pora periodization scenarios.
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Abbreviations
CPD change point detection
DP-WSE dynamic programming based on word semantic evolution
DW2V dynamic word2vec
G-WSE greedy periodization based on word semantic evolution
IR-WSE iterative refinement based on word semantic evolution
KLD Kullback-Leibler Divergence
LT linear transformation
Non-Tran without transformation
OT orthogonal transformation
VNC variability-based neighbor clustering
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