
Chapter 7

Rethinking linearization
Kyle Johnson
University of Massachusetts, Amherst

The reason “movement” is used to describe the relationship between an interroga-
tive phrase in English and the syntactic position is binds a variable in, is because
that variable is silent. Impressionistically, the interrogative phrase has changed lo-
cation – it has moved from the position interpreted as a variable. To derive this
feature of the relationship while maintaining a semantics that correctly captures
the nature of the variable is not trivial. The presently best model is one that claims
that the interrogative phrase is, at least partially, in both positions – the position it
is spoken in and the position the variable is in. Jairo Nunes has suggested a method
of using that model and an algorithm that converts syntactic representations into
strings – a linearization algorithm – to derive the fact that a change of location
is how being in two positions is manifest. I develop this idea in a framework that
expresses the “be in two positions” syntax with phrase markers that allow a term
to be dominated by more than one mother. This interpretation of movement does
not fit well with the execution Jairo Nunes had of his idea. I develop an alternative
implementation that preserves his leading idea.

1 Introduction

In a series of papers, a book, and a dissertation, Jairo Nunes (1995; 1996; 1999;
2004) has provided a compelling way of deriving a signature property of move-
ment, a property I will call terseness.

(1) Terseness
When a term is moved from one position to another, it gets spoken in only
one of those positions.

Kyle Johnson. 2020. Rethinking linearization. In András Bárány, Theresa Biberauer,
Jamie Douglas & Sten Vikner (eds.), Syntactic architecture and its consequences II: Be-
tween syntax and morphology, 113–135. Berlin: Language Science Press. DOI: 10.5281/
zenodo.4280639

https://doi.org/10.5281/zenodo.4280639
https://doi.org/10.5281/zenodo.4280639


Kyle Johnson

There are exceptions to terseness, and some of these Nunes’ account predicts.
This venue doesn’t provide the space to consider these exceptions, or how they
fit Nunes’ project, so I will set them aside and concentrate on the normal case, in
which terseness holds. Nunes’ leading idea is that movement creates a structure
that the linearization algorithm can interpret only if terseness holds.

Nunes’ account has two parts. First, he adopts the copy theory ofmovement (2).

(2) Copy theory of movement
a. From a term X is made a copy: X′

b. X′ is merged into a position higher than X

On this view, movement could take the structure in Figure 7.1, form a copy of
which flower and form the structure in Figure 7.2.1

CP

C0 TP

DP†

D0†

she

TP†

T0

should

VP

V0

bring

DP

D0

which

NP

N0

flower

Figure 7.1: Pre-move structure

1In order to focus on just one movement operation at a time, I will only consider cases of
embedded constituent questions, where movement of the T0 to C0 doesn’t occur.

114



7 Rethinking linearization

CP

DP′

D0′

which′

NP′

N0′

flower′

CP†

C0 TP

DP†

D0†

she

TP†

T0

should

VP

V0

bring

DP

D0

which

NP

N0

flower

Figure 7.2: Post-move structure

The second part relies on a standard condition on how phrase markers are
linearized into strings that Kayne 1994 calls antisymmetry.

(3) Antisymmetry
A linearization cannot contain both 𝑎 < 𝑏 and 𝑏 < 𝑎.

Antisymmetry assumes that a linearization is a set of ordered pairs 𝑥 < 𝑦 ,
where 𝑥 and 𝑦 are words and “<” is the precedence relation. Antisymmetry
simply states that no word can both follow and precede another. Nunes’ sec-
ond proposal, then, is that antisymmetry cannot distinguish one word from. The
structure in Figure 7.2 is not pronounced with two instances of which and flower
because a linearization that contains both which′<she and she<which will be a
violation of antisymmetry. This is terseness.

115



Kyle Johnson

One goal of this paper is to define copies so that they have the effect of in-
voking antisymmetry in the way that Nunes envisions. That definition will use
the idea broached in Engdahl 1980 that a moved term is a term in two syntactic
positions.2 This can be represented by letting phrase marker trees allow mul-
tidominance. Another goal of this paper is to devise a linearization algorithm
that can handle such trees.

2 Nunes’ proposal

Nunes couches his idea with a slightly modified version of the linearization al-
gorithm in Kayne 1994. The key departure from Kayne’s algorithm concerns the
items that are linearized. Kayne’s algorithm linearizes morphemes – including
subword material – and Nunes’ doesn’t. I’ll adopt Nunes’ view, which is useful
in accounting for certain exceptions to terseness. A goal of Kayne’s work is to
derive (4) from the linearization algorithm.

(4) If XP asymmetrically c-commands YP, then the words dominated by XP
(= d(XP)) will precede the words dominated by YP (= d(YP)) (modulo the
effects of movement).

(5) α c-commands β if every phrase dominating α dominates β too, and α
doesn’t dominate β. α asymmetrically c-commands β if α c-commands β
and β doesn’t c-command α.

This is achieved by building (4) into the linearization algorithm along the lines
of (6).

(6) a. Let 𝐿 be the set of pairs of heads and phrases, ⟨𝐴, B⟩, in a phrasemarker
P such that 𝐴 asymmetrically c-commands 𝐵.

b. The linearization of P is the union of d(𝐴) < d(𝐵) for every ⟨𝐴, 𝐵⟩
in 𝐿.3

As Kayne notes, (6) needs to be weakened if it is to work for phrase markers
that have specifiers. To see this, consider how (6) applies to (7).

2Engdahl cites the unpublished Peters & Ritchie (1981) as her source for the idea.
3More explicitly: the linearization of P is {𝑎 < 𝑏: ∀𝑎 ∈ d(𝐴) and ∀𝑏 ∈ d(𝐵) if ⟨𝐴, 𝐵⟩ is in 𝐿 of P}.
Note that “<” is the precedes relation.

116



7 Rethinking linearization

(7) TP

TP†

VP

V0

cry

T0

will

DP

NP

N0

child

D0

the

The 𝐿 for (7) is (8a), and this produces the linearization in (8b).

(8) a. 𝐿 = {⟨D0, N0⟩, ⟨DP, T0⟩, ⟨DP, VP⟩, ⟨DP, V0⟩, ⟨T0, V0⟩, ⟨TP†, D0⟩,
⟨TP†, N0⟩}

b.

⎧⎪⎪
⎨⎪⎪
⎩

𝑡ℎ𝑒 < 𝑐ℎ𝑖𝑙𝑑 𝑐ℎ𝑖𝑙𝑑 < 𝑐𝑎𝑛 𝑐𝑎𝑛 < 𝑐𝑟𝑦
𝑡ℎ𝑒 < 𝑐𝑎𝑛 𝑐ℎ𝑖𝑙𝑑 < 𝑐𝑟𝑦
𝑡ℎ𝑒 < 𝑐𝑟𝑦 𝑐𝑎𝑛 < 𝑡ℎ𝑒

𝑐𝑟𝑦 < 𝑡ℎ𝑒
𝑐𝑎𝑛 < 𝑐ℎ𝑖𝑙𝑑
𝑐𝑟𝑦 < 𝑐ℎ𝑖𝑙𝑑

⎫⎪⎪
⎬⎪⎪
⎭

≡ can cry the child can cry

(8b) violates antisymmetry.

(9) Antisymmetry
A linearization cannot contain both 𝑎 < 𝑏 and 𝑏 < 𝑎.

The problem with (6) is that it allows too many asymmetric c-commanding
pairs to enter 𝐿. Because TP† is part of some of the pairs in 𝐿, the orderings
can<the, can<child, cry<the and cry<child get into the linearization. But because
DP is also part of some of the pairs in 𝐿, the linearization contains the<can,
the<cry, child<can and child<cry. To address this problem, Kayne proposes a
way of limiting the class of items that can be in 𝐿 so that it achieves certain goals
his system has for ordering sub-word morphemes. Because that is not a feature
of the procedure needed to derive terseness, I will take a slightly different tack.
I will limit 𝐿 to just maximal and minimal projections.

(10) a. Let 𝐿 be the set of pairs of heads and maximal projections, ⟨𝐴, 𝐵⟩, in a
phrase marker P such that 𝐴 asymmetrically c-commands 𝐵.

117



Kyle Johnson

b. The linearization of P is the union of d(𝐴) < d(𝐵) for every ordered
pair in 𝐿.

Because TP† is neither aminimal nor amaximal projection it will be jettisoned
from 𝐿. (10) will produce the 𝐿 in (11a), and this generates the correct linearization
in (11b).

(11) a. 𝐿 = {⟨D0, N0⟩, ⟨DP, T0⟩, ⟨DP, VP⟩, ⟨DP, V0⟩, ⟨T0, V0⟩}

b. {
𝑡ℎ𝑒 < 𝑐ℎ𝑖𝑙𝑑 𝑐ℎ𝑖𝑙𝑑 < 𝑐𝑎𝑛 𝑐𝑎𝑛 < 𝑐𝑟𝑦
𝑡ℎ𝑒 < 𝑐𝑎𝑛 𝑐ℎ𝑖𝑙𝑑 < 𝑐𝑟𝑦
𝑡ℎ𝑒 < 𝑐𝑟𝑦

}

≡ the child can cry

(10) correctly linearizes a wide array of syntactic structures and provides a way
of deriving (4).

We are now ready to see howNunes proposes to derive terseness. His proposal
amounts to adopting (12).

(12) A term, 𝑋 , and , 𝑋 ′, cannot be distinguished by antisymmetry.

A consequence of (12) is that a linearization which contains both 𝑋 < 𝑌 and
𝑌 < 𝑋 ′ will violate antisymmetry. Applying (10) to the result of movement in
Figure 7.2 produces the linearization in (13b).

(13) a. 𝐿 =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

⟨D0′,N0′⟩ ⟨DP′,C0⟩ ⟨DP′,TP⟩ ⟨DP′,DP†⟩ ⟨DP′,D0†⟩
⟨DP′,T0⟩ ⟨DP′,VP⟩ ⟨DP′,V0⟩ ⟨DP′,DP⟩ ⟨DP′,D0⟩
⟨DP′,NP⟩ ⟨DP′,N0⟩ ⟨C0,DP†⟩ ⟨C0,D0†⟩ ⟨C0,T0⟩
⟨C0,VP⟩ ⟨C0,V0⟩ ⟨C0,DP⟩ ⟨C0,D0⟩ ⟨C0,NP⟩
⟨C0,N0⟩ ⟨DP†,T0⟩ ⟨DP†,VP⟩ ⟨DP†,V0⟩ ⟨DP†,DP⟩
⟨DP†,D0⟩ ⟨DP†,NP⟩ ⟨DP†,N0⟩ ⟨T0,V0⟩ ⟨T0,DP⟩
⟨T0,D0⟩ ⟨T0,NP⟩ ⟨T0,N0⟩ ⟨V0,D0⟩ ⟨V0,NP⟩
⟨V0,N0⟩ ⟨D0,N0⟩

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

b.

⎧⎪⎪
⎨⎪⎪
⎩

which′ < flower′ flower′ < should should < she she < bring bring < which
which′ < should′ flower′ < she should < bring she < which bring < flower
which′ < she flower′ < bring should < which she < flower which < flower
which′ < bring flower′ < which should < flower
which′ < which flower′ < flower
which′ < flower

⎫⎪⎪
⎬⎪⎪
⎭

≡ which′ flower′ should she bring which flower

118



7 Rethinking linearization

Because of the existence of which’<bring and bring<which in (13b), along with
many other such pairs, antisymmetry is violated.

This derives the impossibility of speaking a moved term in both of the places it
occupies, but something more is needed to produce the string that actually arises.
Nunes suggests that this involves a movement-specific deletion operation which
removes orderings from a linearization. Applied to (13), this deletion operation
could remove orderings to form one of the strings in (14), all of which satisfy
antisymmetry.

(14) a. which flower should she bring
b. which should she bring flower
c. flower should she bring which
d. should she bring which flower

Nunes assumes, and so shall I, that (14a) and (14d) are possible outcomes –
some languages choosing one or the other – but that (14b) and (14c) are not.
To block these two outcomes, Nunes makes two assumptions. First the deletion
operation in question applies not to a linearization – it doesn’t remove elements
of the set in (13) for instance – but to the syntactic structure being linearized.
It removes the linearization statements corresponding to the phrases and heads
that populate a syntactic representation. I’ll formulate Nunes’ condition, which
he calls chain reduction, to reflect this.

(15) Chain reduction
Chain reduction applied to d(𝑋) deletes every ordered pair in a lineariza-
tion that contains a word in d(𝑋), 𝑋 a head or phrase.

To form the strings in (14), chain reduction will delete from 𝐿 the ordered pairs
indicated in (16).

(16) a. To form (14a), chain reduction applies to d(DP).
b. To form (14b), chain reduction applies to d(NP′) and d(D0).
c. To form (14c), chain reduction applies to d(D0′) and d(NP).
d. To form (14a), chain reduction applies to d(DP′).

The second assumption Nunes makes is that there is an economy condition
that favors fewer targets for chain reduction.

(17) Economy
Let 𝑁 be the number of terms that an instance of chain reduction, 𝑅, ap-
plies to. Block 𝑅 if its 𝑁 is greater than the 𝑁 for another 𝑅 that satisfies
antisymmetry.

119



Kyle Johnson

Economy will block the applications of chain reduction in (16b) and (16c) be-
cause of the equally antisymmetry compliant applications of chain reduction in
(16a) and (16d).

There are a variety of successes for this method of deriving terseness, and I will
not challenge it. Instead, I will focus on understanding (12).Why is antisymmetry
unable to distinguish a term from its copy?

3 Multidominance

A simple way of explaining why a term and its copy are the same thing for an-
tisymmetry is that they are the same thing. Rather than modeling movement as
an operation that creates a copy of a term and puts that term in an additional
position, we could model movement as an operation that puts one term in two
positions. This is a thesis that Engdahl (1980), Starke (2001), de Vries (2007), Gärt-
ner (2002), among others, have suggested.

An immediate problem with this view, though, is that it leads to the expecta-
tion that the denotation a phrase has will be the same in both of the positions
movement relates it to. Consider, for instance, a way of representing this thesis
that allows one term to have two positions in a phrase marker. That would give
Figure 7.2 the representation in Figure 7.3.

There is evidence that the semantics of constituent questions of this kind must
be able to involve a binder/variable relation. In principle, we want phrasal move-
ment to be able to cause amoved phrase to bind a variable in the position it moves
from. The representation in Figure 7.3 makes that possibility obscure. The single
phrase,which flower, would not seem to be able to simultaneously have themean-
ing of a variable and the meaning of the term that binds that variable.4 We want
to define “copy of” so that it gives the equivalent of Figure 7.3 for antisymmetry,
but not for the meanings involved.

In Johnson 2012, I argue that the solution to this dilemma comes from recog-
nizing that there can bematerial in the higher position that is not part of the term
that has moved. If we represent this additional material with “Q,” then Figure 7.3
can be replaced by Figure 7.4.

Depending on the kind of semantic relation involved, we can credit the deno-
tation of Q0 with being responsible for creating a binder out of the higher phrase.
See Johnson 2012 for details. I will assume that movement is an operation that
puts one term in two positions, but that it does so always in a way parallel to
Figure 7.4. The moved item is part of a larger term in the higher position.

4But see Engdahl (1986) for a method.

120



7 Rethinking linearization

CP

CP†

TP

TP†

VP

DP

NP

N0

flower

D0

which

V0

bring

T0

should

DP†

D0†

she

C0

Figure 7.3: Remerge structure

Adopting this view requires a recasting of Nunes’ method of deriving terse-
ness. We cannot rely on an operation like chain reduction to fix the violations
of antisymmetry that movement will create as it will overshoot. To see this, con-
sider how (10) will apply to Figure 7.4; it produces the linearization in (18).

(18) a. 𝐿 =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

⟨X0,D0⟩ ⟨X0,NP⟩ ⟨X0,N0⟩ ⟨XP,C0⟩ ⟨XP,C0⟩
⟨XP,TP⟩ ⟨XP,DP†⟩ ⟨XP,D0†⟩ ⟨XP,T0⟩ ⟨XP,VP⟩
⟨XP,V0⟩ ⟨C0,DP†⟩ ⟨C0,D0†⟩ ⟨C0,VP⟩ ⟨C0,V0⟩
⟨C0,DP⟩ ⟨C0,D0⟩ ⟨C0,NP⟩ ⟨C0,N0⟩ ⟨DP†,T0⟩
⟨DP†,VP⟩ ⟨DP†,V0⟩ ⟨DP†,DP⟩ ⟨DP†,D0⟩ ⟨DP†,NP⟩
⟨DP†,N0⟩ ⟨T0,V0⟩ ⟨T0,DP⟩ ⟨T0,D0⟩ ⟨T0,NP⟩
⟨T0,N0⟩ ⟨V0,D0⟩ ⟨V0,NP⟩ ⟨V0,N0⟩ ⟨D0, N0⟩

⎫⎪⎪⎪
⎬⎪⎪⎪
⎭

b.
⎧⎪
⎨⎪
⎩

Q < which which < flower flower < she she < should should < bring
Q < flower which < she flower < should she < bring should < which
Q < she which < should flower < bring she < which should < flower
Q < should which < bring flower < which she < flower bring < which
Q < bring which < which flower < flower bring < flower

⎫⎪
⎬⎪
⎭

≡ Q which flower should she bring which flower

121



Kyle Johnson

CP

XP

X0

Q

CP†

TP

TP†

VP

DP

NP

N0

flower

D0

which

V0

bring

T0

should

DP†

D0†

she

C0

Figure 7.4: Parallel Merge structure

There are numerous violations of antisymmetry in (18b) (e.g.,which<bring and
bring<which) as well as the arguably anomalouswhich<which and flower<flower.
For chain reduction to remove these violations, it would have to apply to either
d(XP) or d(DP). If it applies to d(DP), (18) will lose all ordered pairs that have
eitherwhich or flower in them, producing a linearization that is equivalent to (19).

(19) Q she should bring

If movement puts one thing in two places, thereby explaining (12), then some-
thing must replace chain reduction in Nunes’ explanation for terseness.

A minimal modification of Nunes’ system would be to allow the pairs that go
into 𝐿 to be partial in a way that mimics chain reduction. Rather than removing
ordering statements that produce a violation of antisymmetry, we can allow the
linearization to avoid introducing them to begin with. (10) becomes (20).

(20) a. Let 𝐿 be a set of pairs of heads and maximal projections, ⟨𝐴, 𝐵⟩, in a
phrase marker P such that 𝐴 asymmetrically c-commands 𝐵.

122



7 Rethinking linearization

b. The linearization of P is the union of d(𝐴) < d(𝐵) for every ordered
pair in 𝐿.

Unlike (10a), which required that 𝐿 contain ⟨𝐴, 𝐵⟩ for every 𝐴 that asym-
metrically c-commands 𝐵, (20a) allows 𝐿 to contain a proper subset of such or-
dered pairs: all it requires is that 𝐿 contain ⟨𝐴, 𝐵⟩ only if 𝐴 asymmetrically c-
commands 𝐵. (20) allows partial orderings, and so it will have to be coupled with
something that ensures that every word in a syntactic representation end up in
the linearization. This can be achieved by adopting another of Kayne’s (1994)’s
well-formedness conditions:

(21) Totality
If 𝑎 and 𝑏 are words in P, then either 𝑎 < 𝑏 or 𝑏 < 𝑎 must be in the lineariza-
tion of P.

(20) will allow for the English linearization of Figure 7.4 – in (22) – and totality
will prevent incomplete outcomes like (19).

(22) a. 𝐿 = {
⟨X0, D0⟩ ⟨X0, N0⟩ ⟨D0,N0⟩ ⟨XP,C0⟩ ⟨XP, DP†⟩
⟨XP,T0⟩ ⟨XP,V0⟩ ⟨C0,DP†⟩ ⟨C0,T0⟩ ⟨C0, V0⟩
⟨DP†,T0⟩ ⟨DP†,V0⟩ ⟨T0,V0⟩

}

b.
⎧⎪
⎨⎪
⎩

Q < which which < flower flower < she she < should should < bring
Q < flower which < she flower < should she < bring
Q < she which < should flower < bring
Q < should which < bring
Q < bring

⎫⎪
⎬⎪
⎭

≡ Q which flower she should bring

Moreover, (20) will also correctly block (14b) and (14c), in which which and
flower are linearized in non-contiguous positions. This is because for totality to
be satisfied, XP must be in 𝐿. Only if XP is in 𝐿 will Q get linearized with all the
words that are not in XP. But once XP is in 𝐿, all of the words in XP (i.e., Q, which
and flower) will be linearized in the same way to every word not in XP. A feature
of (20) is that it enforces contiguity on any phrase that enters 𝐿.5
(23) Contiguity

A linearization is contiguous if for every phrase, XP, in 𝐿, if 𝑏 ∉ d(XP), then
𝑏 < 𝑎 or 𝑎 < 𝑏 for every 𝑎 ∈ d(XP).

5There is a very close resemblance between contiguity and the central condition in Lisa Selkirk’s
(2011) match theory, which requires that phrases map onto prosodic units that contain every
word within them. A tantalizing prospect is to reduce contiguity to this condition on the syn-
tax/prosody mapping.

123



Kyle Johnson

An interesting feature of movement is that it creates structures which violate
a stronger form of contiguity, one that holds of every phrase in a structure, not
just those used to form a linearization. This stronger form of contiguity is quite
widely honored by linearization; we should have an account for why it is relaxed
just for movement structures. (20) takes a step towards doing this by letting con-
tiguity hold not of the entire phrase marker, but of the subset of phrases chosen
from that phrase marker to base a linearization on. Totality forces this subset to
be sufficiently representative, spreading contiguity among the non-moved parts
of the phrase marker. The moved parts of a phrase marker are allowed to violate
contiguity because there is a way of satisfying totality without considering all
the positions they are in.

Unfortunately, this feature of (20) prevents any other linearization of
Figure 7.4, including the one Nunes’ theory countenanced in (24).

(24) Q she should bring which flower

In general, if phrasal movement creates a structure in which, like Figure 7.4,
the moved phrase is part of a larger phrase in the higher position, then (20) will
not allow covert movement.

What this section shows is that it’s possible to preserve much of the lineariza-
tion algorithm that Nunes uses to explain terseness, while giving a natural and
simple explanation for why antisymmetry should treat a moved term as if it’s
one thing in two positions. Kayne called his linearization algorithm the linear
correspondence axiom, or LCA. Let’s know this modified version of his algorithm
as the multidominant-friendly linear correspondence axiom, or MLCA.

(25) MLCA
a. Let 𝐿 of P consist of pairs of minimal and maximal projections, ⟨𝐴, 𝐵⟩,

where 𝐴 asymmetrically c-commands 𝐵 in P.
b. A linearization of P is the union of d(𝐴) < d(𝐵) for every ⟨𝐴, 𝐵⟩ in 𝐿

of P.
c. d(𝛼) =def all the words dominated by α.

(26) Antisymmetry
A linearization of P cannot contain both 𝑎 < 𝑏 and 𝑏 < 𝑎.

(27) Totality
A linearization of P must contain 𝑎 < 𝑏 or 𝑏 < 𝑎 for every pair of words
𝑎, 𝑏 in P.

124



7 Rethinking linearization

TheMLCA has properties which should be regarded as features. Some of them
are (28).

(28) MLCA Features
a. Preserves the goal of Kayne’s LCA, i.e. the generalization in (4).
b. Enforces contiguity on a moved phrase (i.e., blocks 14b–c).
c. Derives terseness.
d. Produces linearizations corresponding to overt movement.

It also has a property that could be regarded a bug. If movement has the prop-
erties I argued for (Johnson 2012), then it will not allow for a linearization that
corresponds to covert movement. I regard that as a bug, and so I will offer an
alternative linearization scheme in the next section.

4 Paths

If a structure like Figure 7.4 is to be able to linearize into covert movement, i.e.
a string in which which flower follows bring, then it will be necessary to allow
Q and which flower to end up non-contiguous. This means that the linearization
algorithm cannot preventQ from getting into the linearization unless everything
else in d(XP) gets ordered the same way to the things that XP asymmetrically c-
commands. We must let Q get into the linearization without using XP’s position
to do so. I cannot see a way of doing that which preserves Kayne’s program, so I
will abandon (4) as a goal of the linearization scheme.6 What shouldn’t be aban-
doned, though, is contiguity which seems to be a general truth about how syntac-
tic structures map onto strings. If movement employs multidominant representa-
tions, contiguity must be relaxed, but only just where multidominance arises. So
my goal will be to devise a linearization algorithm which preserves contiguity in
all those cases where multidominance (aka movement) doesn’t arise and explain
why it selectively permits violations where multidominance does arise.

Contiguity is typically conceived of as a relationship between dominance rela-
tions and contiguous strings and this is how I’ve stated it in (23). It enforces the
law in (29).

(29) If words 𝑎1, … , 𝑎𝑛 are dominated by a phrase XP (= d(XP)), then 𝑎1, … , 𝑎𝑛
will form a contiguous substring in the linearization.

6See Abels & Neeleman 2012 for another direction to pursue.

125



Kyle Johnson

For standard phrase markers that don’t have multidominance in them, an
equally valid way of stating the law that contiguity enforces is (30).

(30) If phrase XP1 dominates phrase XP2, then the words in XP2 (i.e., d(XP2))
will form a contiguous substring of the string formed by the words in XP1
(i.e., d(XP1)).

Indeed, the transitive closure of (30) holds for phrase markers that obey conti-
guity and don’t contain multidominance.

(31) Let 𝑝 = (XP1,XP2, … ,XP𝑛) be a series of phrases such that every XP𝑖 in 𝑝
is dominated by every XP𝑗≤𝑖 in 𝑝. For every 𝑝 in a phrase marker, d(XPi)
must be a contiguous substring of d(XP𝑗≤𝑖) for every XP in 𝑝.
(NB: “dominance” and “substring” are reflexive.)

I will call a series of phrases that form a 𝑝, a path.
Interestingly, (31) isn’t obeyed in a phrase-marker that allows for multidom-

inant representations. To see this, consider Figure 7.5 and the linearization of
Figure 7.5 that corresponds to overt movement, in (32).

(32) Overt movement linearization:
Q which flower she should bring here

Two paths that contain DP and NP in Figure 7.5 are (33).

(33) a. Paths for NP:
i. (NP,DP,VP†,VP,TP†,TP,CP†,CP)
ii. (NP,DP,XP,CP)

b. Paths for DP:
i. (DP,VP†,VP,TP†,TP,CP†,CP)
ii. (DP,XP,CP)

(32) makes (33a-i) and (33b-i) violate (31); neither flower (=d(NP)) nor which
flower (=d(DP)) are contiguous substrings of d(TP) (=she should bringwhich flower
here), d(TP†) (=should bring which flower here), d(VP) (=bring which flower here)
or d(VP†) (=bring which flower). If contiguity were to be expressed in a way that
derives (31), then only covert movement operations would be permitted. That’s
not a desirable outcome. Notice, however, that if the paths in (33a-i) and (33b-i)
are ignored, the linearization in (32) doesn’t violate (31). Conversely, the paths in
(33a-ii) and (33b-ii) violate (31) if the linearization is (34).

126



7 Rethinking linearization

CP

XP

X0

Q

CP†

TP

TP†

VP

PP

P0

here

VP†

DP

NP

N0

flower

D0

which

V0

bring

T0

should

DP†

D0†

she

C0

Figure 7.5: Wh-movement structure

(34) Q she should bring which flower here

Under this linearization, neither d(NP) (=flower) nor d(DP) (=which flower) are
contiguous substrings of d(XP) (=Q which flower). This linearization doesn’t vio-
late (31), however, if the paths in (33a-ii) and (33b-ii) are ignored. Paths give us a
way, then, of linearizing a phrase that is in two positions in either one of those
positions. We can use paths to make movement overt or covert.

The linearization algorithm I will propose is based on paths. As we’ve seen,
framing contiguity in terms of paths in the way that (31) does leaves its effects
unchanged for phrase markers that don’t have multidominance in them, but has
useful effects in situations where multidominance arises. The role that asymmet-
ric c-commanding phrases have in the MLCA will be taken up by paths in my
algorithm. Words will get into a linearization by virtue of the paths they have,
and so I will state totality in terms of paths too. This will also allow a phrase
marker that has multidominance, and therefore more than one path for a word

127



Kyle Johnson

or group of words, to satisfy totality by choosing just one of those paths. Finally,
because the formalism for representing linearizations is a set of ordered pairs, (31)
will have to be expressed in a way that references those ordered pairs rather than
the strings they correspond to. Here, then, is a system that does those things.7

(35) Path correspondence axiom (PCA)
a. Let 𝑝(𝑤)=(XP1, XP2,…, XPn), a path, be the set of phrases that dominate

𝑤 , a word, and include the root phrase such that every XPi is dominated
by every XP𝑗≤𝑖.

b. Π(𝑃) is a set of paths formed from the words in 𝑃.
c. d(XP) is the set of 𝑤s such that XP is in 𝑝(𝑤 ). d(𝑤 ) is 𝑤 .
d. If 𝑝, a path, is in Π, then for every 𝑋𝑃 ∈ 𝑝, either 𝑎 < 𝑏 or 𝑏 < 𝑎 is in

the linearization, for all 𝑎 ∈ 𝑑(XP) and 𝑏 ∈ 𝑑(𝛽), 𝛽 XP’s sister.
e. Totality

For every 𝑤 in 𝑃 , Π(𝑃) must contain 𝑝(𝑤).
Totality requires that every word in a sentence be associated with a path that

is used to linearize it. The sum of these paths is Π. For each of these paths, (35d)
then introduces contiguity-preserving ordered pairs into the linearization. (35d)
doesn’t make the language particular correct choices – that must come from a
part of the linearization scheme that fixes the choices among the cross-linguistic
word-orders – but it limits those choices to just ones that satisfy contiguity.

We’ll look at two case studies to see how the PCA does its job. Consider first
a vanilla phrase-marker with no multidominance.

(36) TP

TP†

VP

V0

protest

T0

should

DP

D0

she

For each of thewords in (36), there is only one path. Consequently, the smallest
Π that satisfies totality is (37).

7Note that the PCA does not need antisymmetry to derive terseness. It follows from the part of
the PCA that enforces contiguity. Indeed, it could be that the PCA derives antisymmetry.

128



7 Rethinking linearization

(37) a. 𝑝(she) = {DP, TP}
b. 𝑝(should) = {TP†, TP}
c. 𝑝(protest) = {VP, TP†, TP}

From these paths, we can calculate 𝑑 , which relates phrases to the words that
are linearized by (35d). The 𝑑 of a phrase are all thewords that contain that phrase
in its path.

(38) a. 𝑑(TP) = {she, should, protest}
b. 𝑑(DP) = {she}
c. 𝑑(TP†) = {should, protest}
d. 𝑑(VP) = {protest}

(35d) requires that each of the sets in (38) map onto a contiguous substring in
the linearization. For instance, for (35d) to hold of TP†, all of the words in 𝑑(TP†)
(i.e., should and protest) must be ordered in the same way to the words in TP†’s
sister: 𝑑(DP) (i.e., she). Every phrase that is in some word’s path will be subject
to this requirement, and so every word will be part of a series of phrases that are
contiguous, each larger phrase in that path mapping onto a larger contiguous
superstring containing that word.

The PCA therefore allows for the linearizations of Figure 7.5 in (39).

(39) a. she should protest
b. should protest she
c. she protest should
d. protest should she

This is probably more possibilities than should be allowed – (39d) is a suffi-
ciently rare way for a language to linearize this structure that we might want to
block it – but it comes close to what’s cross-linguistically available. I will assume
that the language particular choices narrow this set down to the particular out-
comes appropriate for any particular language. English (a head initial, Specifier
initial language) chooses (39a).

The second case study is shown in Figure 7.6. As we’ve seen, which and flower
have two paths in Figure 7.6, and so the largest Π contains them both:

(40) a. 𝑝(which) = {DP, VP†, VP, TP†, TP, CP†, CP}
b. 𝑝(which) = {DP, XP, CP}
c. 𝑝(flower) = {NP, DP, VP†, VP, TP†, TP, CP†, CP}

129



Kyle Johnson

CP

XP

X0

Q

CP†

TP

TP†

VP

PP

P0

here

VP†

DP

NP

N0

flower

D0

which

V0

bring

T0

should

DP†

D0†

she

C0

Figure 7.6: Wh-movement structured (repeated from Figure 7.5)

d. 𝑝(flower) = {NP, DP, XP, CP}
e. 𝑝(bring) = {VP†, VP, TP†, TP, CP†, CP}
f. 𝑝(here) = {PP, VP, TP†, TP, CP†, CP}
g. 𝑝(should) = {TP†, TP, CP†, CP}
h. 𝑝(she) = {DP†, TP, CP†, CP}
i. 𝑝(Q) = {XP, CP}

The values for 𝑑 are:

(41) a. 𝑑(CP) = {she, should, bring, here, Q, which, flower}
b. 𝑑(XP) = {Q, which, flower}
c. 𝑑(CP†) = {she, should, bring, here, which, flower}
d. 𝑑(TP) = {she, should, bring, here, which, flower}
e. 𝑑(DP†) = {she}

130



7 Rethinking linearization

f. 𝑑(TP†) = {should, bring, here, which, flower}
g. 𝑑(VP) = {bring, here, which, flower}
h. 𝑑(VP†) = {bring, which, flower}
i. 𝑑(DP) = {which, flower}
j. 𝑑(NP) = {flower}

(35d) prevents almost all linearizations of (40). It allows a linearization for this
Π only under very narrow circumstances: when the language’s word order set-
tings would allow the multidominant phrase to be simultaneously contiguous
to the sisters it has in both of its positions. Because of (41b), (35d) requires the
linearization to have a contiguous string made from Q, which and flower. But be-
cause of (41g) and (41h), it also requires contiguous substrings made from {bring,
which, flower} and {bring, which, flower, here}, whichmeans the linearizationmust
have one of the strings in (42) in it.

(42) a. i. bring which flower here
ii. bring flower which here

b. i. here bring which flower
ii. here bring flower which

c. i. which flower bring here
ii. flower which bring here

The strings in (42a) can’t coexist in a linearization that also puts Q contiguous
with {which, flower}. The strings in (42b) and (42c) can if nothing in larger phrases
separates Q. For instance, the strings in (43) would satisfy (35d).

(43) a. Q which flower bring here should she
b. she should here bring which flower Q

I don’t know of such a case, but I don’t know of any harm in letting in this pos-
sibility. In general, though, (40) is too large to have a viable outcome. A smaller
Π will have to be chosen.

There are four other Πs that satisfy totality. They all give to which and flower
just one path. One such Π chooses paths for which and flower that go through
XP; another chooses paths forwhich and flower that go through VP† instead. The
first of these is (44) and the second (45).

(44) a. 𝑝(which) = {DP, XP, CP}
b. 𝑝(flower) = {NP, DP, XP, CP}

131



Kyle Johnson

c. 𝑝(bring) = {VP†, VP, TP†, TP, CP†, CP}
d. 𝑝(here) = {PP, VP, TP†, TP, CP†, CP}
e. 𝑝(should) = {TP†, TP, CP†, CP}
f. 𝑝(she) = {DP†, TP, CP†, CP}
g. 𝑝(Q) = {XP, CP}

(45) a. 𝑝(which) = {DP, VP†, VP, TP†, TP, CP†, CP}
b. 𝑝(flower) = {NP, DP, VP†, VP, TP†, TP, CP†, CP}
c. 𝑝(bring) = {VP†, VP, TP†, TP, CP†, CP}
d. 𝑝(here) = {PP, VP, TP†, TP, CP†, CP}
e. 𝑝(should) = {TP†, TP, CP†, CP}
f. 𝑝(she) = {DP†, TP, CP†, CP}
g. 𝑝(Q) = {XP, CP}

The 𝑑s for (44) are in (46), and they correspond to the string in (47) in a head-
initial and Specifier-initial language like English.

(46) a. 𝑑(CP) = {she, should, bring, here, Q, which, flower}
b. 𝑑(XP) = {Q, which, flower}
c. 𝑑(CP†) = {she, should, bring, here}
d. 𝑑(TP) = {she, should, bring, here}
e. 𝑑(DP†) = {she}
f. 𝑑(TP†) = {should, bring, here}
g. 𝑑(VP) = {bring, here}
h. 𝑑(VP†) = {bring}
i. 𝑑(DP) = {which, flower}
j. 𝑑(NP) = {flower}

(47) Q which flower she should bring here

The 𝑑s for (45) are in (48), and they correspond to the string in (49), in a head-
initial, Specifier-initial language.

(48) a. 𝑑(CP) = {she, should, bring, here, Q, which, flower}
b. 𝑑(XP) = {Q}
c. 𝑑(CP†) = {she, should, bring, here, which, flower}
d. 𝑑(TP) = {she, should, bring, here, which, flower}
e. 𝑑(DP†) = {she}

132



7 Rethinking linearization

f. 𝑑(TP†) = {should, bring, here, which, flower}
g. 𝑑(VP) = {bring, here, which, flower}
h. 𝑑(VP†) = {bring, which, flower}
i. 𝑑(DP) = {which, flower}
j. 𝑑(NP) = {flower}

(49) Q she should bring which flower

These are the desired outcomes; they correspond to the overt and covert move-
ment possibilities.

The remaining two Πs that satisfy totality give to which and flower divergent
paths. They are both blocked by the PCA. To see how, consider (50), where flower
is given a path through XP and which is given a path through VP†.
(50) a. 𝑝(which) = {DP, VP†, VP, TP†, TP, CP†, CP}

b. 𝑝(flower) = {NP, DP, XP, CP}
c. 𝑝(bring) = {VP†, VP, TP†, TP, CP†, CP}
d. 𝑝(here) = {PP, VP, TP†, TP, CP†, CP}
e. 𝑝(should) = {TP†, TP, CP†, CP}
f. 𝑝(she) = {DP†, TP, CP†, CP}
g. 𝑝(Q) = {XP, CP}

The ds for (50) are (51).

(51) a. 𝑑(CP) = {she, should, bring, here, Q, which, flower}
b. 𝑑(XP) = {Q, flower}
c. 𝑑(CP†) = {she, should, bring, here, which}
d. 𝑑(TP) = {she, should, bring, here, which}
e. 𝑑(DP†) = {she}
f. 𝑑(TP†) = {should, bring, here, which}
g. 𝑑(VP) = {bring, here, which}
h. 𝑑(VP†) = {bring, which}
i. 𝑑(DP) = {which, flower}
j. 𝑑(NP) = {flower}

𝑑(VP†) and 𝑑(VP) together require that the linearization produce the string
bring which here (once English-specific choices are made). But 𝑑(DP) requires
that the linearization also produce the string which flower. There is no way of

133



Kyle Johnson

linearizing these words that preserves these two requirements. Exactly the same
incompatibility arises if the path for flower goes through VP† and the path for
which goes through XP – the other way of choosing divergent paths for these
words. The reason these choices lead to a conflict is because all choices of paths
for which and flower will contain DP, and (35d) will consequently require which
and flower to be contiguous. This is how this system prevents the words in a
moved phrase from getting linearized in different positions.

The PCA, then, allows for both overt and covertmovement and, like theMLCA,
explains why multidominant structures allow for selective relaxation of contigu-
ity. It makes contiguity, rather than asymmetric c-command, the driving force
behind a linearization. The formalization of contiguity involved enforces a par-
ticular kind of “nesting” condition on entire phrase markers. It allows multidom-
inance in just those cases where that nesting condition can be satisfied for every
word in the phrase marker without considering the complete structure of the
sentence.

5 Summary

What I’ve shown here is a way of completing Nunes’ method of deriving terse-
ness that involves defining the “copy of α” as “giving α an addition position in
the phrase marker.” Traditional linearization schemes have stood in the way of
such a move. I’ve offered two new linearization algorithms that don’t, each with
slightly different empirical footprints.

Abbreviations

LCA linear correspondence axiom
MLCA multidominant-friendly

linear correspondence axiom
PCA Path correspondence axiom

Acknowledgements

This paper is largely a channeling of many people’s thoughts. These include Sak-
shi Bhatia, David Erschler, Hsin-Lun Huang, Rodica Ivan, Jyoti Iyer, Petr Kusily,
Deniz Ozyildiz, Ethan Poole, Katia Vostrikova, Michael Wilson, Rong Yin, Rajesh
Bhatt, Peggy Speas, Nikolaos Angelopoulos, John Gluckman, Nicoletta Loccioni,
Travis Major, Iara Mantenuto, Sozen Ozkan, Richard Stockwell, Carson Schutze
and Tim Hunter. A special thanks to Leland Kusmer whose guidance has im-
proved this paper in many ways.

134



7 Rethinking linearization

References

Abels, Klaus &AdNeeleman. 2012. Linear asymmetries and the LCA. Syntax 15(1).
25–74. DOI: 10.1111/j.1467-9612.2011.00163.x.

de Vries, Mark. 2007. Internal and external remerge: On movement, multidomi-
nance, and the linearization of syntactic objects. Ms., University of Groningen.

Engdahl, Elisabet. 1980. The syntax and semantics of questions in Swedish.
Amherst, Massachusetts: University of Massachusetts, Amherst. (Doctoral dis-
sertation).

Engdahl, Elisabet. 1986. Constituent questions. Dordrecht: Reidel.
Gärtner, Hans-Martin. 2002. Generalized transformations and beyond: Reflections

on minimalist syntax. Berlin: Akademie Verlag.
Johnson, Kyle. 2012. Toward deriving differences in how Wh movement and QR

are pronounced. Lingua 122(6). 529–553. DOI: 10.1016/j.lingua.2010.11.010.
Kayne, Richard S. 1994. The antisymmetry of syntax. Cambridge, MA: MIT Press.
Nunes, Jairo. 1995. The copy theory of movement and linearization of chains in the

minimalist program. University of Maryland. (Doctoral dissertation).
Nunes, Jairo. 1996. On why traces cannot be phonetically realized. In Kiyomi

Kusumoto (ed.), NELS 26: Proceedings of the twenty-sixth annual meeting of the
North East Linguistic Society, 211–226. Amherst, MA: GLSA Publications.

Nunes, Jairo. 1999. Linearization of chains and phonetic relization of chain links.
In Samuel David Epstein&Norbert Hornstein (eds.),Workingminimalism, 217–
249. Cambridge, MA: MIT Press.

Nunes, Jairo. 2004. Linearization of chains and sideward movement. Cambridge,
MA: MIT Press.

Peters, Stanley & RobertW. Ritchie. 1981. Phrase linking grammars. Ms., Stanford
University.

Selkirk, Elisabeth. 2011. The syntax–phonology interface. In John Goldsmith, Ja-
son Riggle & Alan C. Yu (eds.), The handbook of phonological theory, Second
edition, 435–484. Malden, MA: Wiley-Blackwell.

Starke, Michal. 2001. Move dissolves into Merge: A theory of locality. University of
Geneva. (Doctoral dissertation).

135

https://doi.org/10.1111/j.1467-9612.2011.00163.x
https://doi.org/10.1016/j.lingua.2010.11.010



