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Classifying compound words has been the ultimate goal of much research in for-
mal linguistics. A popular, cross-linguistically applicable classification (Bisetto &
Scalise 2005) distinguishes three main types of compounds, namely Subordinate,
Attributive, and Coordinate on the basis of the underlying syntactic relation be-
tween the compound elements. Similar tripartitions have also been proposed in
cognitive psychology byworks exploring conceptual combination. Focusing on the
type of semantic interpretation assigned to novel combinations, three main classes
have been traditionally described, namely Relation-linking, Property-mapping,
and Hybrid or Conjunctive (see Wisniewski 1996). Based on these commonali-
ties, we conjecture that syntax-based compound types might also be explained by
means of the semantic properties of the compound and its constituents. Using a
compositional model of distributional semantics (cDSM), we show that (a) the con-
tribution of each constituent in determining the meaning of the compound and
(b) the semantic similarity between the two constituent words are significant pre-
dictors of these classes. These findings suggest that the various compound types
identified by syntactic criteria can also be predicted by means of semantic features.
On the one hand, this confirms the validity of the proposed linguistic categoriza-
tion. On the other hand, we bring further evidence proving the effectiveness of
cDSMs in describing linguistic phenomena.
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1 Introduction

1.1 Classifying compounds

Compounding, namely the mechanism by which two independent words (e.g.
pet, food) combine together to form a novel morphologically-complex word (e.g.
petfood), is one of the most extensively covered topics in the literature of word
formation.1 On the theoretical level, many linguists have been particularly in-
terested in classifying compounds according to various criteria, such as “head-
edness” (roughly speaking, the position and the characteristics of the compound
head, the dominant word in the compound, e.g. food in petfood) (Bloomfield 1933;
Fabb 1998); the presence of a verb or a deverbal noun (Marchand 1969); the kind
of underlying relation between the constituent words, either at a syntactic level
(Bloomfield 1933; Bally 1950; Lees 1960; Bisetto & Scalise 2005; Baroni et al. 2009;
Dressler 2006; Scalise & Bisetto 2009) or at a semantic level (Levi 1978; Warren
1978; Fanselow 1981). Though different and pertaining to somehow diverse lev-
els of analysis, these criteria have been traditionally explored andmixed together
within the same classification framework (see among others Bauer 2001; Haspel-
math 2002; Booij 2005). As a consequence, many influential proposals distinguish
various classes of compounds on the basis of several overlapping properties that
often generate an inconvenient number of subclasses and special cases.

To overcome this issue, Bisetto & Scalise (2005) proposed a cross-linguistic
(and nowadays widely accepted) classification framework based on a single, ho-
mogeneous criterion, that is, the underlying syntactic relation between the com-
pound constituents. Three main classes of compounds are isolated, namely Sub-
ordinate, Attributive, and Coordinate. To illustrate, the compound doghouse be-
longs to the Subordinate class, since the syntactic relation subtending dog and
house is that of subordination. Indeed, the compound can be paraphrased as ‘the
house of the dog’. In contrast, swordfish is labeled as Attributive, given that the
first constituent, sword, acts as an attribute of fish (a swordfish is ‘a fish whose
nose is shaped like a sword’). Finally, Coordinate compounds are formations like
comedy-drama, where the first and the second constituent are linked by the un-
derlying conjunction ‘and’.

1.2 From word combination to conceptual combination

Interestingly, a similar tripartition has been proposed in the cognitive psychol-
ogy literature by works on conceptual combination (Wisniewski 1996; Costello &

1For a complete and exhaustive overview of compounding, see Lieber & Štekauer (2009).
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2 Do semantic features capture a syntactic classification of compounds?

Keane 2000), where the focus is on the type of interpretations provided by people
to novel combinations. By analyzing the circumlocutions produced by speakers
to interpret novel compounds like zebra-horse, in fact, three main classes have
been traditionally isolated, namely Relation-linking, Property-mapping, and Hy-
brid or Conjunctive. The first class includes interpretations involving a relation
between the two concepts, i.e. a zebra-horse is ‘a horse that preys zebras’. In
the second, a property of one concept is mapped to the other, i.e. a zebra-horse
is ‘a striped horse’. In the third, the novel concept is interpreted as a hybrid or
conjunction of the constituent concepts, i.e. a zebra-horse is ‘a creature having
many properties of both horses and zebras’. Though the aim of these works is
to study the various interpretations to novel conceptual combinations, without
any interest in recognizing classes of lexicalized compound words, the types they
identify are reasonably comparable to the linguistic ones proposed by Bisetto &
Scalise (2005). In particular, Relation-linking interpretations correspond to com-
pounds included in the Subordinate class, Property-mapping to Attribute, and
Hybrid/Conjunctive to Coordinate.

A notable difference is that the linguistic classification accounts for lexicalized
(or familiar) compounds, whereas the cognitive one describes novel combinations
which still lack a single, well-defined interpretation. However, we can easily as-
sume that lexicalized compounds are the linguistic realization of a conceptual
combination process, in a way that all compounds start out as novel formations
and become lexicalized with usage in time (Gagné & Spalding 2006). Consistent
with this claim is recent evidence showing that, in the processing of both novel
and familiar compounds, an active combination of constituent meanings is rou-
tinely in place (Gagné & Spalding 2009; Ji et al. 2011; Marelli & Luzzatti 2012;
Marelli et al. 2014). This would suggest that the difference between novel and
familiar compounds is merely in their degree of lexicalization. While the former
can still be interpreted by speakers in various ways, the latter have only one pos-
sible interpretation, that the classification by Bisetto & Scalise (2005) describes
in terms of a fixed syntactic relation between the compound’s constituents.

The second important difference is that interpretations of novel combinations
pertain to the conceptual level, that is, they describe relations between the con-
cepts being combined together. As such, the tripartition described above is essen-
tially semantic. In contrast, the linguistic classification considered here is based
on a purely syntactic criterion. Based on the commonalities highlighted above,
however, it might be that the two levels of analysis are not mutually exclusive,
but possibly related and somehow overlapping. Lexical semantic approaches cor-
roborate this conjecture. Lieber (2009), for example, proposed that the different
compound types identified by Bisetto & Scalise (2005) depend, at least in part, on
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the intrinsic semantic features of the compound constituents. Moreover, classifi-
cations of compounds based on taxonomies of semantic relations reveal a certain
degree of overlap between the syntactic and the semantic analysis (Levi 1978).
For example, the semantic relation AND seems hardly distinguishable from the
purely syntactic relation of coordination, which is subtended by the underlying
conjunction ‘and’.

1.3 Aim of the work

Based on this concurring evidence, we conjecture that various classes of com-
pounds defined at the syntactic level may be also explained in terms of the se-
mantic properties of the compounds and their constituents. In particular, our
hypothesis is that measures quantifying the semantic role played by each con-
stituent in contributing to the overall compound meaning, as well as the degree
of semantic similarity between the constituents, should be effective in predict-
ing different classes. Moreover, we expect these semantic measures to be able to
capture different, syntax-based classes without relying on other non-semantic
properties of compounds. Crucially, we do not claim that the distinction is thus
purely semantic, making superfluous any categorization focusing on the syntac-
tic relation between the compound constituents. Rather, we believe that the the-
oretically motivated and widely accepted discrete classifications proposed by lin-
guists can be also described in terms of the continuous, quantitative aspects of
the meaning of compounds and their constituents. In other words, we expect the
quantitative semantic properties to parallel the qualitative grammatical distinc-
tions, thus demonstrating, at the same time, the effectiveness of our proposal and
the validity of the linguistic theory.

We experiment with a dataset of English compounds for which annotation
based on the classification by Bisetto & Scalise (2005) (Subordinate, Attributive,
Coordinate) is available. To predict each class, we use several semantic variables
such as the degree of similarity between the constituents and the individual con-
tribution of each constituent word in determining the meaning of the whole com-
pound. We quantify these measures by using a compositional model of distribu-
tional semantics (Baroni & Zamparelli 2010; Guevara 2010; Mitchell & Lapata
2010; Zanzotto et al. 2010), following recent evidence proving the effectiveness
of this approach in modeling morphological processes such as composition and
derivation (Marelli & Baroni 2015; Günther & Marelli 2016; Marelli et al. 2017).
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2 Do semantic features capture a syntactic classification of compounds?

1.4 Computational models of meaning

Based on the core notion that similar words occur in similar contexts (Harris
1954; Firth 1957), distributional semantic models (henceforth, DSMs) represent
lexical meanings by means of vectors encoding the contexts in which words ap-
pear in a large corpus. The intuition is that words that occur in similar linguistic
contexts (e.g., cat and dog) should be semantically more similar than words that
do not. Typically, this geometric representation is used to quantify the degree of
distributional similarity between two words. Given the corresponding vectors,
the similarity is computed in terms of their geometric distance, typically the co-
sine of the angle (Turney & Pantel 2010). In particular, the closer two vectors
in the semantic space (i.e., the space populated by all the linguistic vectors), the
higher their similarity. Traditional DSMs, such as the pioneering Latent Seman-
tic Analysis (LSA; Landauer & Dumais 1997), have been largely used to obtain
quantitative estimates of important semantic variables such as the degree of con-
ceptual or topical similarity between two words (Padó & Lapata 2007; Gagné &
Spalding 2009; Kuperman 2009; Wang et al. 2014).

1.5 Distributional semantics and compounds

In the domain of compounds, distributional semantic approaches have been ex-
tensively applied to two main tasks: noun-noun compound interpretation (Van
de Cruys et al. 2013; Dima & Hinrichs 2015; Dima 2016; Shwartz & Dagan 2018;
Fares et al. 2018) and compositionality prediction (Reddy et al. 2011; Schulte im
Walde et al. 2013; Salehi et al. 2014; 2015; Cordeiro et al. 2016). The former task,
usually tackled as a classification problem, aims at automatically predicting the
semantic interpretation of the compound (i.e., the semantic relation between
the constituents). Given the compound street protest, for example, a system is
trained to predict that the relation holding between the nouns is ‘locative’. Sev-
eral datasets of compounds annotated with different numbers of semantic rela-
tions have been released for the tasks (Ó Séaghdha 2007; Tratz &Hovy 2010), and
various systems capitalizing on distributional representations (usually obtained
with neural network architectures; see Section 2.1) have been recently proposed.
Overall, this approach has been proved to be successful in the task, though the
performance is shown to be dependent on the number and granularity of seman-
tic relations. As for the latter task, it is focused on predicting the degree of compo-
sitionality of a noun-noun compound, namely the extent to which the meaning
of the whole depends on the meaning of the constituent words. Various datasets
annotated with human judgments have been proposed through time (Reddy et
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al. 2011; Roller et al. 2013; Farahmand et al. 2015), and extensive explorations of
DSMs in the task have been carried out. Crucially for the purpose of this study,
distributional measures of similarity obtained with compositional approaches
were found to be highly predictive of human judgments in this task (Reddy et al.
2011; Schulte im Walde et al. 2013; Salehi et al. 2015; Cordeiro et al. 2016).

1.6 A compositional approach to compounds

Of great interest for the present work, Lynott & Ramscar (2001) were the first to
employ distributional semantic models to study novel compounds (e.g. zebra-
horse). In particular, the aim of that work was to test whether a measure of
semantic similarity between compound constituents (quantified with LSA) was
predictive of both (a) the ease of novel compound comprehension and (b) the dis-
tinction between Relation-linking and Property-mapping combinations. To do
so, they experimented with novel compounds and their corresponding interpre-
tations as provided by previous works on conceptual combination (Wisniewski
& Love 1998; Gagné 2000). Overall, the model was shown to perform remarkably
well in all the tasks. Lynott & Ramscar (2001), however, claimed that current dis-
tributional models like LSA were not capable of modeling the whole process of
conceptual combination. Since they can only quantify the similarity between in-
dependent, free-standing words (e.g. zebra and horse), they are not informative
at all about the relation between these words and the resulting compound. As
such, they represent static, word-based models of lexical semantics which do not
account for the potentially infinite linguistic productivity.

Compositional DSMs (hence, cDSMs) tackle precisely these issues. Aimed at
accounting for the compositional nature of language (Baroni, Bernardi, et al.
2014), these models capitalize on DSM vectors and perform either simple (Mitch-
ell & Lapata 2010) or more complex, theoretically inspired operations (Baroni &
Zamparelli 2010; Guevara 2010; Zanzotto et al. 2010) to compose existing lexical
entries. By exploiting simple operations (sum, multiplication) or being trained
with distributional information about combinations that are already observed in
the source corpus, these models can indeed be used to generate meaning repre-
sentations for both novel and lexicalized formations. Recently, this approach was
shown to be effective in modeling morphological processes such as derivation
and compounding (Marelli & Baroni 2015; Günther & Marelli 2016; Marelli et al.
2017). Closely related to the present study, recent work (Günther & Marelli 2016;
Marelli et al. 2017) exploited cDSMs to generate compositional representations
of compounds. Marelli et al. (2017), in particular, explored whether a simple but
effective regression-based compositional method (Guevara 2010) can capture the
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variability in semantic relations between the constituents of novel compounds.
This system was shown to be remarkably effective and flexible in capturing re-
lational information. Based on this evidence, in the present work we employ the
same model and test it in the task of predicting theoretically motivated, syntax-
based classes of compounds.

2 Experiment

The present experiment investigates whether different, syntax-based classes of
compound words (Subordinate, Attributive, and Coordinate) can be captured by
means of semantic properties of the compound and its constituents. To quantify
these properties, (a) we generate compositional representations of compounds
and obtain similarity scores assessing the role of each constituent in contributing
to the overall meaning; (b) we measure the degree of similarity between the first
and second constituent.

A note on the terminology used in the paper. Until this point, we used the neu-
tral terms “first constituent” and “second constituent” to refer to, respectively,
dog and house in doghouse. As briefly mentioned in Section 1.1, one constituent
usually plays a dominant role compared to the other since it acts as the “head” of
underlying phrase. In this example, the head is clearly house (indeed, doghouse
is ‘the house of the dog’). Consistently, this element determines the syntactic
category of the phrase and, semantically, it represents a hyperonym of the com-
pound. By default, in English compounds the second constituent acts as the com-
pound “head”, whereas the first acts as the compound “modifier” (Bauer 2009).
We stick with this arguably simplified terminology2 and, from now on, we inter-
changeably use the terms “first constituent” or “modifier” to refer to the leftmost
element, “second constituent” or “head” to refer to the rightmost one.

2.1 Semantic space

Following Baroni, Dinu, et al. (2014), who demonstrated that DSMs generated
using feedforward neural network models largely outperform traditional count-
based architectures inmany tasks, we built a state-of-the-art CBOW semantic space
using the word2vec toolkit by Mikolov et al. (2013), with all the parameters that
turned out to be best-predictive in Baroni, Dinu, et al. (2014). In particular, the

2Without going into much detail, it should be mentioned that this picture is indeed less straight-
forward than it may appear. For instance, in the English compound singer-songwriter the two
constituents play a similar role, in a way that they could be both considered as the compound
“head” (and the compound as “double-headed”) (Bauer 2009).
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vectors have 400 dimensions and were built using (a) a context window of 5
words to either side of the target word, (b) a subsampling procedure which pe-
nalizes high-frequency words in the training phase (𝑡 = 1 × 10−5), (c) 10 negative
samples. The vectors were trained using a corpus of written English containing
around 2.8-billion tokens (a concatenation of BNC, ukWaC, and a 2009-dump
of Wikipedia), the same used in Baroni, Dinu, et al. (2014). To avoid sparsity ef-
fects, we experimented with the vectors corresponding to the 300kmost frequent
words in the corpus.

2.2 Materials

We experimented with a sample of the MorBoComp database including 163 En-
glish compounds. MorboComp is a large, multilingual database of compounds
that has been developed to study compounding from a typological perspective.3

Each compound in the database is richly annotated (i.e., it is provided with in-
formation about headedness, compound and constituents’ grammatical category,
compound structure, etc.) and, crucially for our purposes, it is classified as Subor-
dinate (hence, SUB), Attributive (hence, ATT) or Coordinate (hence, CRD) on the
basis of the classification and terminology proposed by Bisetto & Scalise (2005).
To illustrate, schoolteacher is tagged as SUB, keyword as ATT, and king-emperor
as CRD.

Consistent with the criteria outlined in Bisetto & Scalise (2005), the 163-item
sample contained cases of both “phrasal” compounds (do-it-yourself illustration,
around-the-world flight) and “neoclassical” formations (bibliography, theology).
In addition, a handful of items labeled with OTH (i.e., Other) were found. How-
ever, since this label was used by the annotators for either unresolved or id-
iosyncratic cases, we decided not to consider them in our investigation. Simi-
larly, we removed neoclassical formations since their constituents can be affixes
and suffixes rather than free-standing, independent words (e.g. biblio-). As a con-
sequence, in our distributional semantics approach we could not have a vector
representation for these items. Finally, additional 9 compounds were discarded
since one of their constituents turned out not to be included in the 300k-vector
semantic space. Specifically, 8 out of 9 of themissing itemswere first constituents
of phrasal compounds, e.g. all-goes-well (in all-goes-well atmosphere) or floor-of-
a-birdcage (in floor-of-a-birdcage taste), whereas in one case (well-deserver) the
missing items was the second constituent (deserver). After this filtering process,
our resulting dataset included 132 compounds (67 SUB, 49 ATT, 16 CRD), that we
used for our experiment.

3For further details, see: http://morbocomp.sslmit.unibo.it/
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2 Do semantic features capture a syntactic classification of compounds?

2.3 Generating composed representations

For each of the 132 compounds in the list, we generated a composed representa-
tion using the vectors described in Section 2.1 and the compositional model by
Guevara (2010). As previously mentioned, one of the main strengths of compo-
sitional DSMs is their ability to produce meaning representations also for com-
binations that are not attested in the source corpus. That is, given a novel or
unattested compound, we are able to represent it as an independent vector on
the basis of the meanings of its constituents (zebra and horse). This aspect was
of crucial importance in our experiment, where 60 out of the 132 compounds
extracted from MorBoComp turned out not to be present in the source seman-
tic space. That is, almost half of the compounds were not among the 300k most
frequent words in the corpus and, consequently, did not have a distributional
representation. By using a compositional model capitalizing on the representa-
tions of the two constituents, however, we were able to overcome this limitation
of traditional DSMs and generate a meaning representation for all the items, re-
gardless of whether they had a “static” semantic representation or not.

The method used in the present study, in particular, was implemented by Gue-
vara (2010) to model compositionality as depending on the semantic relation in-
stantiated in the syntactic structure. As such, it looks particularly suitable for
the case of compounds, which embed a modifier-head structure. Indeed, previ-
ous work proved this model to be very effective in generating composed repre-
sentations for compounds (Marelli et al. 2017). Technically, the composed repre-
sentations are obtained with the combinatorial procedure depicted in Figure 1:
given two vectors ⃖⃗𝑢 and ⃖⃗𝑣 each representing one of the constituent words, their
composed representation can be computed as 𝑐 = M⃖⃗𝑢 +H⃖⃗𝑣 , where M and H are
weight matrices estimated from training examples. These matrices are trained
using least squares regression,4 having the vectors of the constituents as inde-
pendent words (dog, house) as inputs and the vectors of example compounds
(doghouse) as outputs. The two matrices are thus optimized so that the similarity
between the weighted sum of the two constituent vectors (the composed vector)
and the compound vector extracted from the semantic space (the observed vec-
tor) is maximized. Or, in other words, the composed vector obtained by means of
the compositional model is built in a way that closely approximates the original
one.

4As reported by Guevara (2010), this method is commonly employed to approximate func-
tions in problems of multivariate multiple regression with a small number of observations
and a greater number of variables, that is a similar condition to the one involving high-
dimensionality vectors representing word meanings and (relatively) limited data.
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Figure 1: Representation of the training phase of the compositional
method used in the study (adapted from Marelli et al. 2017).

In the present study, we trained the compositional model with a list of En-
glish noun-noun compounds extracted from the CELEXEnglish Lexical Database
(Baayen et al. 1995). By default, we treated all compounds as written in solid form,
that is, without whitespaces or hyphens between the two constituents. When
the solid compound was not found in our semantic space, we looked for it in its
hyphenated form. The training set included 2174 triplets ⟨modifier, head, com-
pound⟩, none of which was also present in the dataset we obtained from Mor-
BoComp. We then used the estimated weight matrices for generating composed
representations for each of the 132 compounds in our sample.

2.4 Semantic variables

For each vector obtained compositionally, we computed four composition-based
semantic measures, namely (1) similarity between the composed representation
of the compound and its modifier (e.g. between keyword and key), (2) similarity
between the composed representation of the compound and its head (e.g. be-
tween keyword and word), (3) neighborhood density, that is, the average cosine
similarity between the composed vector and its top-10 nearest neighbor vectors
in the semantic space (all these 3 measures have been introduced by Vecchi et al.
2011), and (4) entropy, that is a measure of vector quality firstly introduced by
Lazaridou et al. (2013).

By operationalizing the similarity between the composed compound vector
and either constituents, in particular, we aimed at quantifying the extent to
which each single word contributes to the overall meaning obtained composi-
tionally. Although operationalized in terms of the cosine of the angle between
the compound vector and either constituents (in the same way as standard DSMs
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do), indeed, these measures genuinely describe the morphological process itself
rather than merely taking into account its start and end points. Based on these
properties, such measures have been recently used in studies with compound
words. For example, they have been shown to be effective in predicting meaning-
fulness ratings on novel combinations (Günther &Marelli 2016) and in capturing
relational information in compounds (Marelli et al. 2017).

As far as neighborhood density and entropy are concerned, both of them have
been proposed to provide information about the meaningfulness of vectors en-
coding new concepts. The rationale of the former is that meaningful vectors
should live in a region of the semantic space that is densely populated by vec-
tors representing many related concepts, while meaningless vectors should be
way more isolated. For the latter, the intuition is that meaningful vectors should
have a skewed distribution, with few dimensions (corresponding to the salient
semantic features of the word) being highly activated, i.e. having large values. In
contrast, meaningless vectors should have a more uniform distribution, which
would be a proxy for a less defined, fuzzier meaning. As a consequence, entropy
would be inversely correlated with meaningfulness.

A (5) fifth semantic but non-compositional measure was introduced follow-
ing Lynott & Ramscar (2001), who employed Latent Semantic Analysis (LSA) to
quantify the degree of similarity between the first and the second constituent of
a compound. Here, we took the compound constituent vectors (e.g. the vectors of
key and word) from the source semantic space (see Section 2.1) and simply com-
puted their cosine similarity. This measure might be helpful in distinguishing
between different compound classes, based on the evidence that in both theo-
retical linguistics (see Lieber 2009) and conceptual combination literature (see
Wisniewski 1996) this factor has been considered as explanatory of different
classes/interpretations.

2.5 Non-semantic variables

In addition to the 5 semantic variables described above, we also included in our
experiment a number of non-semantic control variables. For each compound and
its constituent words we extracted word-form frequency from the source corpus
(i.e., the number of times a word is encountered in the corpus in that exact form,
regardless of its grammatical category). Compound frequency was calculated by
summing the occurrences of the given compound in both solid and hyphenated
orthographic form (blackboard and black-board, respectively). All frequency val-
ues, namely (6) compound frequency, (7) modifier frequency and (8) head fre-
quency were subsequently log-transformed following standard practice in psy-
cholinguistics (Brysbaert et al. 2018).
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Table 1: Mean and standard deviation of all the predictors included in
the experiment. MCsim: modifier-compound similarity. HCsim: head-
compound similarity. MHsim: modifier-head similarity. Comp length:
compound length. Comp freq: compound frequency. Mod freq: modi-
fier frequency. Head freq: head frequency.

Predictor SUB ATT CRD Total

mean sd mean sd mean sd mean sd

MCsim 0.21 0.10 0.18 0.09 0.24 0.13 0.20 0.10
HCsim 0.25 0.11 0.21 0.10 0.24 0.10 0.23 0.11
MHsim 0.13 0.10 0.14 0.09 0.34 0.15 0.16 0.12
Density 0.41 0.07 0.40 0.09 0.39 0.08 0.40 0.08
Entropy 4.50 0.05 4.99 0.06 5.01 0.05 4.50 0.06
Comp length 10.40 2.54 10.90 3.37 10.90 2.94 10.70 2.90
Comp freq 1.87 1.17 2.25 1.38 2.31 0.72 2.06 1.22
Mod freq 5.26 0.86 5.31 1.38 5.32 0.48 5.29 1.05
Head freq 4.97 0.85 4.92 0.89 5.12 0.65 4.97 0.84
PMI 3.53 4.00 4.83 4.80 4.34 3.47 4.11 4.27

Num items 67 49 16 132

In addition, we computed (9) PointwiseMutual Information (PMI) between the
constituents as a measure of compound lexicalization. This widely-used associa-
tion measure (Church & Hanks 1990) compares the probability of co-occurrence
of two words in the source corpus with the probability of the two words co-
occurring by chance. To illustrate, although the word pair ⟨the apple⟩ is likely
much more frequent than ⟨apple juice⟩, the PMI of the latter will be higher, since
the determiner the is likely to co-occur very frequently with any noun in the
corpus, thus being less informative compared to the pair ⟨apple juice⟩, whose
mutual association is intuitively strong. In particular, the higher the degree of
lexical association between two words, the higher the PMI value.

Finally, we included (10) compound length measured as the number of charac-
ters making up the string (e.g., blackboard has length 10). When present, hyphens
were not counted. Descriptive statistics including mean values and standard de-
viations for all the predictors used in the present experiment are reported in
Table 1.
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2.6 Data analysis

Our hypothesis is that various, syntax-based classes of compounds might be pre-
dicted on the basis of semantic features. If this is correct, our semantic variables
will turn out to be reliable predictors of one class over the others. In order to test
our hypothesis, we included all the predictors reported in Table 1 in a series of
logit regression models that individually estimated the probability of one class
over the other. That is, we tested three separate models in the task of predicting
one compound type against each of the others: (1) ATT vs SUB, (2) ATT vs CRD,
(3) CRD vs SUB.

All analyses were carried out within the R statistical computing environment.
We adopted a backward procedure to progressively simplify each statistical mod-
el. Starting from a full-factorial model including all the independent variables,
predictors were removed one by one when their absence did not significantly
lower the overall model fit. At each step, the removal procedure was attempted
for the predictor with the largest 𝑝-value. The contribution of each parameter to
be removed was checked with a goodness-of-fit chi-square test. Finally, atypical
outliers were identified and removed using as a criterion 2.5 standard deviation
of the residual errors.

3 Results

For the better presentation of results, we summarize them in tables and discuss
each model in a separate section. In the leftmost part, each table reports the list
of variables included in the full-factorial version of each model. In the central
part, model-simplification procedure (Removal order), chi-square goodness-of-fit
test (Chi-square) and its results (𝑝) are reported. The rightmost part shows the
effects of the variables included in the final model.

3.1 ATT vs SUB

The first model, testing ATT (halfprice) against SUB (bus-stop) compounds, reli-
ably distinguishes the two classes on semantic bases. As shown in Table 2, SUB is
predicted against ATT by the higher semantic similarity between the compound
and either the modifier (𝑝 = 0.0182) or the head (𝑝 = 0.0355). That is, the mean-
ing of SUB compounds such as bus-stop is found to be more strongly determined
by the individual meanings of its constituents compared to ATT compounds like
halfprice, since both the modifier and the head contribute to the overall meaning
to a greater extent than either constituents of ATT compounds do. Therefore, the
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Table 2: Results of the logit model opposing ATT (1) to SUB (0).

Parameter Chi-square 𝑝 Removal order Estimate z-value 𝑝
(Intercept) – – Not removed −0.8362 −0.741 0.4587
MCsim – – Not removed −6.4337 −2.361 0.0182
HCsim – – Not removed −5.5904 −2.102 0.0355
Density – – Not removed 7.6332 1.916 0.0553
PMI – – Not removed 0.0878 1.885 0.0594
MHsim 2.5275 0.1119 6
Head freq 0.7637 0.3822 5
Mod freq 0.4882 0.4847 4
Comp length 0.8206 0.365 3
Comp freq 0.0745 0.7848 2
Entropy 0.005 0.9433 1

higher the similarity between the compound and either constituent, the higher
the probability to have a SUB rather than an ATT compound.

It should be noted that frequency measures, entropy, compound length and
the similarity between the two constituents were progressively removed from
the model. That is, their effects do not contribute to predict one class over the
other. The remaining variables, namely PMI and neighborhood density, are in-
stead included in the finalmodel, even though their effect is only partially reliable
(𝑝 > 0.05). Both these measures, anyway, indicate that higher values of both PMI
and density are more likely to predict ATT rather than SUB compounds.

3.2 ATT vs CRD

The secondmodel tests ATT (halfprice) against CRD (comedy-drama) compounds.
As reported in Table 3, our model reliably distinguishes between the two classes
on the basis of a single, highly significant semantic predictor, namely the seman-
tic similarity between the compound constituents (𝑝 = 0.0002). In particular,
the higher the similarity between the modifier and the head of a compound, the
higher the probability of having a CRD, rather than an ATT compound. All other
variables have been progressively removed from the final model since none of
them significantly contribute to the overall goodness of fit.
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Table 3: Results of the logit model opposing ATT (1) to CRD (0).

Parameter Chi-square 𝑝 Removal order Estimate z-value 𝑝
(Intercept) – – Not removed 5.667 4.094 0.0001
MHsim – – Not removed −18.182 −3.667 0.0002
Comp length 2.0539 0.1518 9
Comp freq 1.2866 0.2567 8
Head freq 0.77 0.3802 7
HCsim 0.8033 0.3701 6
MCsim 0.5967 0.4398 5
Mod freq 0.7654 0.3816 4
PMI 0.5182 0.4716 3
Entropy 0.1344 0.7139 2
Density 0.0346 0.8524 1

Table 4: Results of the logit model opposing CRD (1) to SUB (0).

Parameter Chi-square 𝑝 Removal order Estimate z-value 𝑝
(Intercept) – – Not removed −0.0843 −0.037 0.9707
MHsim – – Not removed 36.3465 3.03 0.0024
HCsim – – Not removed −25.2847 −2.44 0.0146
Comp length – – Not removed −0.5323 −1.996 0.0459
PMI 0.3016 0.5828 7
Comp freq 0.3286 0.5665 6
MCsim 0.2825 0.595 5
Density 0.1055 0.7453 4
Entropy 0.2244 0.6357 3
Mod freq 0.1236 0.7251 2
Head freq 0.0084 0.9267 1
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3.3 CRD vs SUB

The third model opposes CRD (comedy-drama) to SUB (bus-stop) compounds. As
in the other cases, the model reliably distinguishes between one class and the
other on semantic bases. In particular, CRD is predicted over SUB by the degree
of semantic similarity between the two constituents (𝑝 = 0.0024). The greater
the similarity between the modifier and the head of a compound, the higher the
probability of having a CRD rather than a SUB compound. Also, SUB is predicted
over CRD by the degree of similarity between the compound and its head (𝑝 =
0.0146). That is, the head constituent contributes more to the overall meaning
of SUB compounds (e.g., stop in bus-stop) than CRD compounds (e.g., drama in
comedy-drama).

In addition to these semantic variables, compound length turns out to be also
predictive of one class over the other. As reported in Table 4, in fact, its effect is
reliable (𝑝 = 0.0459) and it indicates that longer compounds are more likely to
be SUB than CRD. All other parameters were instead progressively removed.

3.4 Overall results

Taken together, these results indicate that the degree of semantic similarity be-
tween the compound’s constituents (i.e. the modifier and the head) is a highly re-
liable predictor of CRD against both other classes. As shown in the barplot in Fig-
ure 2, the higher the similarity between the constituents, the more a compound
is likely to be CRD rather than either ATT (𝑝 = 0.0002) or SUB (𝑝 = 0.0024).
Moreover, the semantic similarity between the compound and its head is a pre-
dictive measure of SUB over both other types, as shown in Figure 3. That is, the
more the head contributes to the meaning of the overall compound, the more
the compound is likely to be SUB rather than either ATT (𝑝 = 0.0355) or CRD
(𝑝 = 0.0146).

In order to evaluate the predictive power of each model, we further computed
the accuracy with which the items under investigation were correctly assigned
to the correct classes. First, we obtained the classes predicted by each logit model.
Second, we computed the accuracy of each model by dividing the number of cor-
rectly predicted items by the total number of items included in the final model.
As a comparison, for each model we also computed the accuracy of a majority
baseline obtained by simply dividing the number of cases of the majority class
by the total number of cases involved. As reported in Table 5, the best predictive
model turned out to be the one opposing CRD vs SUB (0.90 accuracy) followed by
ATT vs CRD (0.85) and ATT vs SUB (0.61). These numbers were in line with the
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Figure 2: Similarity between modifier and head is predictive of CRD
over both ATT and SUB.
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Figure 3: Similarity between the compound and its head is predictive
of SUB over both ATT and CRD.
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Table 5: From left to right: overall accuracy of each model as compared
to the accuracy of the majority baseline, correctly predicted cases,
missed cases. In brackets we report the correct class.

Model Accuracy (baseline) Predicted cases Missed cases

ATT-SUB 0.61 (0.58)

able-bodied (ATT)
long-awaited (ATT)
schoolteacher (SUB)
racingclub (SUB)

commonroom (ATT)
ironcurtain (ATT)
underbody (SUB)
apronstring (SUB)

ATT-CRD 0.85 (0.75)

best-equipped (ATT)
keyword (ATT)
father-daughter (CRD)
comedy-drama (CRD)

bodypolitic (ATT)
highschool (ATT)
typewrite (CRD)
subject-verb (CRD)

CRD-SUB 0.90 (0.81)

comedy-drama (CRD)
blue-black (CRD)
bus-stop (SUB)
cutthroat (SUB)

schoolteacher (SUB)
sleepwalk (SUB)
typewrite (CRD)
subject-verb (CRD)

pattern of accuracy obtained by the majority baseline, which is sensible to the
low number of CRD cases and therefore outputs higher scores for comparisons
involving this class. Though our models always outperformed the baselines, the
increase was noticeably lower in ATT vs SUB (+3%) compared to both CRD vs
SUB (+9%) and ATT vs CRD (+10%). The limited number of items do not allow
us to make any statistically reliable claim on the performance of the classifier.
However, our focus is on testing whether the membership in a compound class
is affected by a set of theoretically-relevant variables rather than proposing an
effective classification algorithm. In this light, our results provided evidence for
the effectiveness of these models. At the same time, they suggested that experi-
menting with more data would be desirable to further validate their power.

Besides accuracy, Table 5 reports some cases of correctly predicted and missed
compounds for each of the models.

4 Discussion

The present study investigated whether various, syntax-based classes of com-
pounds (Subordinate, Attributive, Coordinate) can be described in terms of the
quantitative, continuous properties of the meaning of the compounds and their
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constituents. To obtain these semantic measures, we generated cDSM represen-
tations for a list of compounds for which such classification was available. By
running a series of logit models including both semantic and non-semantic fac-
tors as independent variables, we showed that our models are able to reliably
capture different classes by means of semantic features.

4.1 On the modifier-head similarity

In particular, we showed that Coordinate compounds like comedy-drama are pre-
dicted over either Subordinate (busstop) or Attributive (halfprice) by the higher
semantic similarity between the head and the modifier. This finding is consistent
with previous evidence from both theoretical linguistics and psychology. Within
the lexical semantics approach, Lieber (2009) indeed proposed that Coordinate
compounds are generated when the two constituents share almost identical “bod-
ies” and “skeletons”, that is, when the words to be combined have highly similar
meanings.

Also, our finding is in line with several theories of conceptual combination,
according to which Hybrid or Conjunctive interpretations would be produced
by people for novel combinations which involve highly similar concepts, e.g.
moose-elephant (see among others Wisniewski 1996). Accordingly, and consis-
tent with our results, Relation-linking interpretations (roughly equivalent to Sub-
ordinate compounds) would be instead produced for semantically highly dis-
similar pairs, e.g. apartment-dog. Since in our model the similarity between the
constituents also distinguishes between Coordinate (Hybrid/Conjunctive) and
Attributive compounds (Property-mapping), we argue that this result is consis-
tent with the graded description proposed in many conceptual combination theo-
ries, where the difference between Property-mapping and Hybrid combinations
would be due to an increasing number of both “commonalities” and “alignable
differences” between the concepts to be combined (Wisniewski 1996).

4.2 On the semantic role of compound constituents

Second, we showed that Subordinate compounds are predicted against Attribu-
tive on the basis of the higher similarity between the compound and either con-
stituent. That is, in compositionally obtained Subordinate compounds both the
modifier and the head contribute to a greater extent to the overall meaning than
in Attributive ones. Moreover, the similarity between the compound and its head
is a reliable predictor of Subordinate over both other classes.

First of all, these findings are again consistent with the lexical semantics litera-
ture (Scalise et al. 2005; Lieber 2009). In it, Subordinate compounds are typically
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characterized by a structure in which the head selects its argument. Therefore,
the head contributes more to the overall meaning in this kind of compounds
compared to the other classes, where a formal relation between the elements
is absent. Also, these results are consistent with the different mechanisms pro-
posed in the conceptual combination literature for Relation-based interpretations
(capitalizing on a “slot-filling” procedure) and Property-based ones (where an
“alignment” process is routinely carried out) (Wisniewski & Gentner 1991; Wis-
niewski 1996). In a nutshell, the slot-filling procedure would imply a bigger role
of the compound head compared to the other competing mechanism since, dur-
ing combination, the head would be just filled in one of its “slots” by the modifier
concept.

Interestingly, these findings are also consistent with evidence from embodied
cognition (Louwerse 2008). In particular, the embodied conceptual combination
theory (ECCo) by Lynott & Connell (2010) proposes that the great majority of
relational interpretations (corresponding to Subordinate compounds) are “non-
destructive”, namely, they result from the combination of constituent concepts
that are left intact during the meshing of their “affordances”. To illustrate, in
this approach the compound picture book (i.e. ‘a book that has pictures’) is non-
destructive, since the pictures in question are still intact entities in the pages
of the book. Simplifying somewhat, the combinatorial procedure that leads to
Relation-based interpretations (Subordinate) does not modify heavily the mean-
ing of the original constituents, whereas Property-mapping ones (Attributive)
are almost always destructive, that is, they involve the “destruction” of (part of)
the constituent concepts. Using an example from Lynott & Connell (2010), the
compound icicle fingers would reduce icicle to a representation of ‘coldness’ and
‘stiffness’. At the same time, the representation of the head (fingers) would be
switched toward a more figurative, metaphorical meaning, less similar to its pro-
totypical representation (see also, e.g., iron curtain). In this light, the similarity
between either constituent as an independent word and the compound will be
generally higher in Relation-based (Subordinate) compared to Property-based in-
terpretations (Attributive), given that the combinatorial procedure of the former
type does not heavily modify the meaning of the original constituents. More-
over, this observation provides indirect evidence that meaning representations
extracted from texts via distributional semantics models can encode grounded
information, at least to some extent (Louwerse 2011).
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4.3 On attributive compounds

Third, compositionally-derived Attributive compounds are characterized by both
a weaker contribution of the constituents in determining the overall meaning
compared to Subordinate and a lower similarity between the constituents com-
pared to Coordinate. This pattern of results is again consistent with Lieber (2009),
who proposes that Attributive formations emerge when the semantic features of
the constituents are too disparate to be interpreted in a Coordinative way and
lack the argument structure that is typical of Subordinate compounds. Accord-
ingly, Attributive compounds would represent a last-resort strategy used when
the typical semantic features of the other classes are not satisfied (Lieber 2009).
This description, according to which Attributive compounds would result when
no discriminative features are present, is in line with evidence from conceptual
combination showing that acceptability judgements for Property-based (Attribu-
tive) interpretations to novel compounds (e.g., a whale boat is ‘a large boat’) are
slower compared to Relation-based (Subordinate) interpretations (e.g. a whale
boat is ‘a boat for hunting whales’) (Gagné 2000). According to Gagné & Spald-
ing (2015), indeed, this would suggest that Relation-based interpretations are the
product of an initial compositional process that, in the absence of the features
that lead to either a relational interpretation (Subordinate) or a coordinate inter-
pretation (Coordinate), leads to Property-mapping interpretations.

4.4 On the methodology

On the methodological level, it should be mentioned that we used a composi-
tional model to generate representations for a list of compounds whose con-
stituents were nouns, verbs, adverbs, adjectives, etc. even though in the train-
ing phase only noun-noun compounds from CELEX were used. This could have
represented a weakness for the system, causing the model to be biased toward
noun-noun combinations. By looking at the results, however, we observed a sim-
ilar, remarkably good performance of the model in all items, regardless of the
grammatical category of the constituents. This is also clear by inspecting the
examples in Table 5, where it can be noted that the parts-of-speech are almost
uniformly distributed. However, it might be still possible that a richer training set
might lead to even better results, perhaps achieving a better performance in gen-
erating meaning representations for less systematic, more opaque compounds.
Indeed, we hypothesize that the lower accuracy obtained by the model oppos-
ing Attributive vs Subordinate compared to the others might be possibly due to
this issue. Finally, we believe that the effectiveness of such an approach might
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be further validated by testing it on a larger (and possibly balanced with respect
to compound type) set of annotated compounds. This, on the one hand, would
strengthen the predictive power on the prediction task. On the other hand, it
would allow more extensive, fine-grained analyses on the successes and failures
of the models. We plan to further investigate this issue in future work.

4.5 On the effectiveness of cDSMs in predicting compound relations

The effectiveness of our approach in the proposed task is in line with previous
work showing that compositional models of distributional semantics are success-
ful in capturing relational information between the constituents of a compound.
In particular, our task is related to that of predicting compound semantic inter-
pretation (see Section 1.5), where compositionally-obtained representations have
been used to assign the correct semantic relation to noun-noun expressions. By
experimenting with a number of cDSMs (including the one adopted in this study
by Guevara 2010), for example, Dima (2016) obtained results comparable to state-
of-the-art in 2 popular datasets (Ó Séaghdha 2007; Tratz &Hovy 2010). Compared
to SoAmethods, however, Dima (2016) only exploited information fromword em-
beddings, thus proving the effectiveness of both distributed representations and
compositional methods. In quantitative terms, our results are not directly com-
parable due to both the different experimental setting (we did not tackle the task
as a classification problem) and the number of relations involved (3 vs either 6 or
43). Moreover, our results cannot be compared with previous work since, to our
knowledge, we are the first in proposing this task. However, these studies jointly
show that compositional representations are successful in predicting compound
relations defined on either semantic or syntactic bases.

4.6 Final remarks

In conclusion, this study suggests that different compound types identified on
syntactic bases can be also defined in terms of continuous, quantitative features
of themeaning of the compound and its constituents.We believe that discrete and
continuous approaches are two faces of the same coin, the former representing
a theoretically motivated, cross-linguistically valuable framework aimed at de-
scribing complex linguistic phenomena, the latter providing an interesting way
to quantitatively test them. As indicated by our results, compositional models of
distributional semantics present a flexible and powerful way to capture many of
these phenomena.

54



2 Do semantic features capture a syntactic classification of compounds?

Acknowledgements

Sandro Pezzele did most of the work reported in the present article while em-
ployed at CIMeC, University of Trento. We are grateful to Marco Baroni and
Laura Vanelli for their valuable feedback during the early stages of the project.
We thank Sergio Scalise for providing the MorBoComp subset used in the exper-
iment. We are also grateful to the participants of the First Quantitative Morphol-
ogy Meeting (Belgrade, July 2015) for the helpful questions and discussion.

References

Baayen, R. Harald, Richard Piepenbrock & LéonGulikers. 1995. The CELEX lexical
database (CD-ROM). University of Pennsylvania, Philadelphia, PA: Linguistic
Data Consortium.

Bally, Charles. 1950. Linguistique générale et linguistique française. 3rd edition.
Berne: A. Francke.

Baroni, Marco, Raffaela Bernardi & Roberto Zamparelli. 2014. Frege in space: A
program of compositional distributional semantics. Linguistic Issues in Lan-
guage Technologies 9(6). 5–110.

Baroni, Marco, Georgiana Dinu & Germán Kruszewski. 2014. Don’t count, pre-
dict! A systematic comparison of context-counting vs context-predicting se-
mantic vectors. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, vol. 1, 238–247.

Baroni, Marco, Emiliano Guevara & Vito Pirrelli. 2009. Sulla tipologia dei com-
posti N+N in italiano: Principi categoriali ed evidenza distribuzionale a con-
fronto. In Ruben Benatti, Giacomo Ferrari & Monica Mosca (eds.), Linguistica
e modelli tecnologici di ricerca (Atti del 40esimo Congresso della Società di Lin-
guistica Italiana), 21–23. Rome: Bulzoni.

Baroni, Marco & Roberto Zamparelli. 2010. Nouns are vectors, adjectives are ma-
trices: Representing adjective-noun constructions in semantic space. In Pro-
ceedings of the 2010 Conference on Empirical Methods in Natural Language Pro-
cessing, 1183–1193. Boston.

Bauer, Laurie. 2001. Compounding. InMartin Haspelmath, Ekkehard König,Wulf
Oesterreicher & Wolfgang Raible (eds.), Language typology and language uni-
versals, 695–707. Berlin & New York: De Gruyter.

Bauer, Laurie. 2009. Typology of compounds. In Rochelle Lieber & Pavol Štekauer
(eds.), The Oxford handbook of compounding, chap. 17, 343–356. New York: Ox-
ford University Press.

55



Sandro Pezzelle & Marco Marelli

Bisetto, Antonietta & Sergio Scalise. 2005. The classification of compounds.
Lingue e linguaggio 4(2). 319–332.

Bloomfield, L. 1933. Language. Chicago: University of Chicago Press.
Booij, Geert. 2005. The grammar of words: An introduction to linguistic morphology

(Oxford linguistics). Oxford: Oxford University Press.
Brysbaert, Marc, Paweł Mandera & Emmanuel Keuleers. 2018. The word fre-

quency effect in word processing: An updated review. Current Directions in
Psychological Science 27(1). 45–50.

Church, Kenneth W. & Patrick Hanks. 1990. Word association norms, mutual
information, and lexicography. Computational Linguistics 16(1). 22–29.

Cordeiro, Silvio, Carlos Ramisch, Marco Idiart & Aline Villavicencio. 2016. Pre-
dicting the compositionality of nominal compounds: Giving word embeddings
a hard time. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, vol. 1, 1986–1997.

Costello, Fintan J. & Mark T. Keane. 2000. Efficient creativity: Constraint-guided
conceptual combination. Cognitive Science 24(2). 299–349.

Dima, Corina. 2016. On the compositionality and semantic interpretation of En-
glish noun compounds. In Proceedings of the 1st Workshop on Representation
Learning for NLP, 27–39.

Dima, Corina & ErhardHinrichs. 2015. Automatic noun compound interpretation
using deep neural networks and word embeddings. In Proceedings of the 11th
International Conference on Computational Semantics, 173–183.

Dressler, Wolfgang U. 2006. Compound types. In Gary Libben & Gonia Jarema
(eds.), The representation and processing of compound words, 23–44. Oxford: Ox-
ford University Press.

Fabb, Nigel. 1998. Compounding. In A. Spencer & A.M. Zwicky (eds.), Handbook
of morphology, 66–83. Oxford: Blackwell.

Fanselow, Gisbert. 1981. Zur Syntax und Semantik der Nominalkomposition. Tübin-
gen: Niemeyer.

Farahmand, Meghdad, Aaron Smith & Joakim Nivre. 2015. A multiword expres-
sion data set: Annotating non-compositionality and conventionalization for
English noun compounds. In Proceedings of the 11th Workshop on Multiword
Expressions, 29–33. Denver, Colorado, USA.

Fares, Murhaf, Stephan Oepen & Erik Velldal. 2018. Transfer andmulti-task learn-
ing for noun–noun compound interpretation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, 1488–1498.

Firth, John R. 1957. Papers in Linguistics, 1934-1951. Oxford: Oxford University
Press.

56



2 Do semantic features capture a syntactic classification of compounds?

Gagné, Christina L. 2000. Relation-based combinations versus property-based
combinations: A test of the CARIN theory and the dual-process theory of con-
ceptual combination. Journal of Memory and Language 42(3). 365–389.

Gagné, Christina L. & Thomas L. Spalding. 2006. Conceptual combination: Im-
plications for the mental lexicon. In Gary Libben & Gonia Jarema (eds.), The
representation and processing of compound words, chap. 7, 145–168. New York:
Oxford University Press.

Gagné, Christina L. & Thomas L. Spalding. 2015. Semantics, concepts, and meta-
cognition: Attributing properties andmeanings to complex concepts. In Laurie
Bauer, Lívia Körtévlyessy & Pavol Štekauer (eds.), Semantics of complex words,
9–25. New York: Springer.

Gagné, Christina L. & Thomas L. Spalding. 2009. Constituent integration dur-
ing the processing of compound words: Does it involve the use of relational
structures? Journal of Memory and Language 60(1). 20–35.

Guevara, Emiliano. 2010. A regression model of adjective-noun compositionality
in distributional semantics. In Proceedings of the 2010Workshop on GEometrical
Models of Natural Language Semantics, 33–37. Uppsala, Sweden.

Günther, Fritz &MarcoMarelli. 2016. Understanding karma police: The perceived
plausibility of noun compounds as predicted by distributional models of se-
mantic representation. PLoS ONE 11(10). e0163200.

Harris, Zellig. 1954. Distributional structure. Word 10(2-3). 146–162.
Haspelmath, Martin. 2002. Understanding morphology. London: Edward Arnold.
Ji, Hongbo, Christina L. Gagné & Thomas L. Spalding. 2011. Benefits and costs

of lexical decomposition and semantic integration during the processing of
transparent and opaque English compounds. Journal of Memory and Language
65(4). 406–430.

Kuperman, Victor. 2009. Revisiting semantic transparency in English compound
words. In 6th International Morphological Processing Conference. Turku, Fin-
land.

Landauer, Thomas K. & Susan T. Dumais. 1997. A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and representation
of knowledge. Psychological Review 104(2). 211.

Lazaridou, Angeliki, Eva Maria Vecchi & Marco Baroni. 2013. Fish transporters
and miracle homes: How compositional distributional semantics can help NP
parsing. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing.

Lees, Robert B. 1960. The grammar of English nominalizations. Bloomington: Re-
search Center in Anthropology.

57



Sandro Pezzelle & Marco Marelli

Levi, Judith N. 1978. The syntax and semantics of complex nominals. New York:
Academic Press.

Lieber, Rochelle. 2009. A lexical semantic approach to compounding. In Rochelle
Lieber & Pavol Štekauer (eds.), The Oxford handbook of compounding, chap. 5,
78–104. New York: Oxford University Press.

Lieber, Rochelle & Pavol Štekauer (eds.). 2009. The Oxford handbook of compound-
ing. New York: Oxford University Press.

Louwerse, Max M. 2008. Embodied relations are encoded in language. Psycho-
nomic Bulletin & Review 15(4). 838–844.

Louwerse, Max M. 2011. Symbol interdependency in symbolic and embodied cog-
nition. Topics in Cognitive Science 3(2). 273–302.

Lynott, Dermot & Louise Connell. 2010. Embodied conceptual combination. Fron-
tiers in Psychology 1. 212.

Lynott, Dermot &Michael Ramscar. 2001. Can wemodel conceptual combination
using distributional information? In Proceedings of the 12th Irish Conference on
Artificial Intelligence and Cognitive Science, 1–10.

Marchand, Hans. 1969. The categories and types of present-day English word-
formation: A synchronic-diachronic approach. Munich: Beck.

Marelli, Marco & Marco Baroni. 2015. Affixation in semantic space: Modeling
morpheme meanings with compositional distributional semantics. Psychologi-
cal Review 122(3). 485–515.

Marelli, Marco, Georgiana Dinu, Roberto Zamparelli & Marco Baroni. 2014. Pick-
ing buttercups and eating butter cups: Spelling alternations, semantic related-
ness, and their consequences for compound processing. Applied Psycholinguis-
tics 36(6). 1421–1439.

Marelli, Marco, Christina L. Gagné & Thomas L. Spalding. 2017. Compounding as
abstract operation in semantic space: Investigating relational effects through
a large-scale, data-driven computational model. Cognition 166. 207–224.

Marelli, Marco & Claudio Luzzatti. 2012. Frequency effects in the processing of
Italian nominal compounds: Modulation of headedness and semantic trans-
parency. Journal of Memory and Language 66(4). 644–664.

Mikolov, Tomas, Kai Chen, Greg Corrado & Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. http://arxiv.org/abs/1301.3781/.

Mitchell, Jeff & Mirella Lapata. 2010. Composition in distributional models of
semantics. Cognitive Science 34(8). 1388–1429.

Ó Séaghdha, Diarmuid. 2007. Annotating and learning compound noun seman-
tics. In Proceedings of the 45th Annual Meeting of the ACL: Student Research
Workshop, 73–78.

58

http://arxiv.org/abs/1301.3781/


2 Do semantic features capture a syntactic classification of compounds?

Padó, Sebastian & Mirella Lapata. 2007. Dependency-based construction of se-
mantic space models. Computational Linguistics 33(2). 161–199.

Reddy, Siva, Diana McCarthy & Suresh Manandhar. 2011. An empirical study on
compositionality in compound nouns. In Proceedings of the 5th International
Joint Conference on Natural Language Processing, 210–218. Chiang Mai, Thai-
land.

Roller, Stephen, Sabine Schulte im Walde & Silke Scheible. 2013. The (un) ex-
pected effects of applying standard cleansingmodels to human ratings on com-
positionality. In Proceedings of the 9th Workshop on Multiword Expressions, 32–
41.

Salehi, Bahar, Paul Cook & Timothy Baldwin. 2014. Using distributional similar-
ity of multi-way translations to predict multiword expression compositional-
ity. In Proceedings of the 14th Conference of the European Chapter of the Associ-
ation for Computational Linguistics, 472–481. Gothenburg, Sweden.

Salehi, Bahar, Paul Cook & Timothy Baldwin. 2015. A word embedding approach
to predicting the compositionality of multiword expressions. In Proceedings of
the 2015 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, 977–983. Denver, CO.

Scalise, Sergio & Antonietta Bisetto. 2009. The classification of compounds. In
Rochelle Lieber & Pavol Štekauer (eds.), The Oxford handbook of compounding,
chap. 3, 34–53. New York: Oxford University Press.

Scalise, Sergio, Antonietta Bisetto & Emiliano Guevara. 2005. Selection in com-
pounding and derivation: Morphology and its demarcations. In Wolfgang U.
Dressler, Dieter Kastovsky, Oskar E. Pfeiffer & Franz Rainer (eds.),Morphology
and its demarcations, chap. 14, 133–150. Amsterdam: John Benjamins Publish-
ing Company.

Schulte im Walde, Sabine, Stefan Müller & Stefan Roller. 2013. Exploring vec-
tor space models to predict the compositionality of German noun-noun com-
pounds. In 2nd Joint Conference on Lexical and Computational Semantics, vol. 1,
255–265. Atlanta, GA, USA.

Shwartz, Vered & Ido Dagan. 2018. Paraphrase to explicate: Revealing implicit
noun-compound relations. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 1200–1211.
Melbourne, Australia.

Tratz, Stephen & Eduard Hovy. 2010. A taxonomy, dataset, and classifier for auto-
matic noun compound interpretation. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, 678–687.

Turney, Peter D. & Patrick Pantel. 2010. From frequency tomeaning: Vector space
models of semantics. Journal of Artificial Intelligence Research 37(1). 141–188.

59



Sandro Pezzelle & Marco Marelli

Van de Cruys, Tim, Stergos Afantenos & Philippe Muller. 2013. MELODI: A su-
pervised distributional approach for free paraphrasing of noun compounds.
In 2nd Joint Conference on Lexical and Computational Semantics, Volume 2: Pro-
ceedings of the 7th International Workshop on Semantic Evaluation, vol. 2, 144–
147.

Vecchi, Eva Maria, Marco Baroni & Roberto Zamparelli. 2011. (Linear) maps of
the impossible: Capturing semantic anomalies in distributional space. In Pro-
ceedings of the Workshop on Distributional Semantics and Compositionality, 1–
9.

Wang, Hsueh-Cheng, Li-Chuan Hsu, Yi-Min Tien & Marc Pomplun. 2014. Pre-
dicting raters’ transparency judgments of English and Chinese morphological
constituents using latent semantic analysis. Behavior Research Methods 46(1).
284–306.

Warren, Beatrice. 1978. Semantic patterns of noun-noun compounds. Acta Uni-
versitatis Gothoburgensis. Gothenburg Studies in English Goteborg 41. 1–266.

Wisniewski, Edward J. 1996. Construal and similarity in conceptual combination.
Journal of Memory and Language 35(3). 434–453.

Wisniewski, Edward J. & Dedre Gentner. 1991. On the combinatorial semantics of
noun pairs: Minor and major adjustments to meaning. Advances in Psychology
77. 241–284.

Wisniewski, Edward J. & Bradley C. Love. 1998. Relations versus properties in
conceptual combination. Journal of Memory and Language 38(2). 177–202.

Zanzotto, Fabio Massimo, Ioannis Korkontzelos, Francesca Fallucchi & Suresh
Manandhar. 2010. Estimating linear models for compositional distributional
semantics. In Proceedings of the 23rd International Conference on Computational
Linguistics, 1263–1271.

60


