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Preface

This book starts out with the idea of modeling human language varieties as
information-theoretic variables, and proceeds to define a conditional indepen-
dence relation between sets of them.The conditional independence relationships
are then used to infer two types of directed networks over language varieties
which have all the properties of causal graphs, as defined by Pearl (2009). Such
a graph can be interpreted as a parsimonious explanation of how the lexicon of
the investigated varieties was shaped by inheritance and contact. This type of
directed phylogenetic network is more general than the types which were previ-
ously discussed in the literature on tractable phylogenetic network inference, as
covered e.g. in the book-length overview by Morrison (2011).

After a summary of the necessary background in historical linguistics (Chap-
ter 2) and causal inference (Chapter 3), Chapter 4 describes themany preparatory
steps which were necessary to arrive at good test data for these methods. Since
none of the existing lexical databases has all the characteristics necessary for
automatic computation of lexical overlaps across language family boundaries, a
new deep-coverage lexical database of Northern Eurasia was compiled as part of
the project which gave rise to this book. This NorthEuraLex database contains
data for an unusually large list of more than a thousand concepts, and is the first
database to cover the languages of a large continuous geographic area with more
than 20 language families in a unified phonetic format. For four interesting areas
of language contact (the Baltic Sea, the Uralic languages, Siberia, and the Cauca-
sus), the literature on language contacts is surveyed at the end of this chapter
to build a gold-standard of contact events which we would expect an automated
method to be able to extract from the database.

Since network inference builds on a similarity measure which is based on mea-
suring lexical overlap, the word forms need to be grouped into sets of etymolog-
ically related words in a preparatory step. While this clustering into “cognate”
sets could be done manually by experts in the linguistic history of the respective
region, recent developments in computational historical linguistics have made
it possible to infer approximate cognate judgments by automated means. These
approaches still misclassify many non-cognate pairs as cognates and vice versa,
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but the number of errors is low enough for much of the relevant signal to persist
on the language level, which makes it possible to apply statistical methods. By in-
troducing a new phonetic form alignment method called Information-Weighted
Sequence Alignment (IWSA), this book shows that established methods for auto-
mated cognacy detection are refinable in such a way that they work on phonet-
ically transcribed dictionary forms, making it unnecessary to manually reduce
all words to their stems before running cognate detection on them. The method
shows its strength especially in the unusual scenario of cross-family cognate de-
tection, where it does not pay off to assume cognacy of similar forms as much
as on the single-family datasets commonly used in the literature on automated
cognate detection.

The central contribution of this book, laid out in Chapter 6, is the derivation
of a consistent information measure for sets of language varieties which is based
on cognate set overlaps. The resulting measure of conditional mutual informa-
tion quantifies a notion of lexical flow, where the lexical material needs to be
distributed via paths connecting varieties in order to explain the overlap in their
lexicons. Standard causal inference algorithms can then be applied to conditional
independence constraints arising from vanishing mutual information. The result
is a network which is minimal in the number of lateral connections while still
being able to explain the cognate overlap patterns in the observed varieties.

In Phylogenetic Lexical Flow Inference (PLFI), the simpler of the two algo-
rithms introduced by this book, proto-languages aremodeled explicitly as sources
of overlaps in the inherited lexicon of related varieties. This requires the use of
a guide tree defining the proto-languages, on which existing ancestral state re-
construction methods from bioinformatics are used to reconstruct the presence
or absence of each cognate set at each node. The resulting flow network adds
directed lateral links to the guide tree, each of which represents some lexical
material that was inferred to be transmitted from the donor to the recipient lan-
guage by borrowing. The framework is general enough to infer directional con-
tact among proto-languages, which means that the output structures are fully
general evolutionary networks.

In contrast, Contact Lexical Flow Inference (CLFI), which is described and eval-
uated in Chapter 7, does not explicitly model the proto-languages, but instead
conceptualizes them as unobserved sources of shared lexical material. The con-
tact flow network only features the varieties included in the data, and different
arrow types distinguish directional contact from common inheritance. From the
statistical point of view, the proto-languages become latent confounders which
cause spurious dependencies between the observable language variables. The
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presence of such hidden common causes is not necessarily a problem for causal
inference, since the most advanced algorithms can in principle distinguish de-
pendence relations that are due to common causes from those that are a product
of direct causal relationships.

For both algorithms, the discrete and unreliable nature of the cognate data
makes it necessary to develop alternative methods for the different stages of
causal inference, with the purpose of increasing robustness against erroneous
cognacy judgments. This is achieved by a combination of re-analyzing the in-
tuition behind the PC algorithm for causal inference in order to quantify and
balance conflicting signals arising from different three-variable configurations,
and putting further consistency restrictions on edge deletion decisions via a con-
nectedness criterion on the level of individual cognate sets.

Both methods are evaluated on the lexical database as well as large amounts of
simulated cognacy data. Chapter 5 describes themodel used to generate the simu-
lated data, which is based on a simple evolutionary process that mimics language
change by lexical replacement and borrowing on the level of individual words.
This model is shown to produce realistic cognate data which will also be of use
in validating other methods for inferring evolutionary networks from cognacy-
encoded language data, whether expert-annotated or based on automated cog-
nate detection.

ix
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1 Introduction

Many common questions asked by researchers about the interrelationships be-
tween language varieties can be framed in terms of the direction of influence.
A sociolinguist might ask which social group inside a society has introduced a
certain usage of a word and how this usage spread, a dialectologist is often faced
with the question where a certain phonetic innovation originated, and a histor-
ical linguist will be interested in whether a group of clearly related words from
two otherwise unrelated languages can be explained by borrowing, and if so, in
which direction they are likely to have been borrowed.

Across these domains, data tends to be available only in terms of discrete fea-
tures assigned to each variety (perhaps with frequency information), or contin-
uous measures of distance or similarity. We can only observe the distribution of
these features at certain points, and often only a single point, in time, whereas
the focus of our interest is on the processes generating the data we see. The chal-
lenge is to develop and test theories about these processes post-hoc based only
on observable data.

Historical linguists are often faced with data from a set of languages about
which little is known, and need to develop a coherent set of reconstructions and
sound changes to explain how the observed data most likely came about. This
book explores the idea of using causal inference for this purpose, a comparatively
recent approach that is designed to systematically extract evidence about the
directionality of influence between statistical variables based on observational
data alone, whereas in classical statistics, the direction of causality between pairs
of variables can only be determined by experiment.

The conditional independence tests which are necessary for constraint-based
causal inference can be generalized with the help of information theory, a mathe-
matical framework which provides a systematic way of analyzing the knowledge
provided by sources of information, quantifying how informative a certain piece
of information is if we already know the information from a different source, and
most crucially, to offset the shared information different pairs of sources provide
about each other in very complex ways in order to answer the question whether
some source of information (e.g. some language) will provide any new knowl-
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edge if we already know the information coming from a set of other sources (e.g.
related languages).

Causal inference has the advantage of being able to infer very general graph
structures, whereas the bulk of efforts in automated inference of linguistic his-
tory has been on inferring tree structures, a very common simplifiedmodel of the
historical developments shaping the linguistic landscape. In recent years, work
on automated inference of phylogenetic trees has quite successfully been per-
formed on many language families whose internal structure was found to be
difficult to determine based on the classical methods. In these works, contact be-
tween languages is usually only seen as causing noise which complicates infer-
ence of the inheritance tree, and sometimes needs to be corrected for. In contrast,
methods for explicitly determining a set of likely contact events are still in their
infancy. A still largely open question is whether it is possible to determine algo-
rithmically not only which languages form a genetic unit by offspring, but also
which contacts have taken place, and in which direction the lexical material was
transmitted.

The problem that I am setting out to solve in the present volume can be de-
scribed as the inference of lexical flow. The basic metaphor is that lexical mate-
rial flows into a language either by inheritance from an earlier ancestral language
(much as water flowing down a river), or through borrowing (spillovers into adja-
cent waterways). To stay with the metaphor, the challenging task of lexical flow
inference is then equivalent to measuring the composition of the water on vari-
ous outlets of a large delta, and infer a structure of sources, brooks and spillovers
which may have produced this pattern.

Starting only with parallel wordlists for a set of languages, the first step is to
determine which of the words from different languages are cognates, i.e. related
by common ancestry. Given a model specifying which words in a set of neighbor-
ing languages are cognates, the next step is to build a theory of which languages
are genetically related (offspring of a common ancestral language), and how the
languages influenced each other during their history. In this book, I show that
building on state-of-the-art methods from computational linguistics to perform
automated cognate detection, and then performing novel algorithmic methods
inspired by causal inference on the cognate data, it is possible to come rather
close to a good solution for two types of lexical flow inference problem. My al-
gorithms are evaluated both against real data derived from a new large-scale
lexicostatistical database, and against synthetic data which were generated by
a new simulation model which allows me to generate any amount of realistic
cognacy data for simulated linguistic areas.

2



While the evaluations I perform show that the structure of the flow networks
is quite good, and that a lot of the expected directional signal is indeed found,
some erroneous directional arrows are invariably inferred as well. This gives my
current algorithms the character of tools for exploratory data analysis, which can
be used to quickly infer an initial picture of relevant connections in very large
datasets, and to locate questions of interest which would then be investigated
further using classical or fully probabilistic methods.

Because it is based on very general mathematical and algorithmic ideas, the
framework I propose and explore for a single application in this book is much
more widely applicable to a range of problems of similar structure covering other
types of linguistic entities.

For instance, many varieties of interest to dialectology and sociolinguistics
could be modeled as information-theoretic variables as well. Where I build on
a measure of lexical overlap to determine lexical flow between languages in the
contact history of a linguistic area, diatopic variation, as between the dialects spo-
ken in different villages, could instead be measured based on phonetic or phono-
tactic features, and my infrastructure could be applied in order to determine the
direction in which certain phonetic innovations spread through a language area.

Diastratic variation, e.g. between the elevated code of an educated elite and
the everyday usage of different professions, might be modeled in terms of the
usage patterns of near-synonyms, and analyzed using causal inference in order to
determine in which social group a lexical replacement is likely to have originated,
even if diachronic data is not available.

Diaphasic variation, e.g. between the language variants used by the same per-
son in different communicative settings, as the language used in formal keynotes,
at press conferences, and by politicans in discussions with voters, could be mod-
eled based on the usage of certain constructions, in order to conclude from the
overlaps which familiar setting tends to be used as a model for usage in less
familiar settings.

Diamesic variation, e.g. between the language used in televised political de-
bates as opposed to the language used in written manifestos and the language
of opinion pieces in newspapers, could be modeled in terms of phraseological
features. The resulting overlap patterns would likely provide hints about which
medium is most influential, and the pathways by which new phrases tend to be
adopted across the different media.

In addition to language varieties modeled on different levels of description, the
general framework can also be applied to other types of linguistic entities. For in-
stance, in previous work (Dellert 2016b), I have started to explore an analogous
overlap measure which treats concepts as variables, and treats their colexifica-
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1 Introduction

tions in different languages as observations. The resulting model summarizes
how often knowledge about the realizations of a certain concept in some lan-
guage allows to predict the word used for other concepts, and causal inference
on this model provides some evidence about likely pathways of semantic change.

Coming to the structure of this book, Chapters 2 and 3 serve as introductions
to the core terminology and issues of computational historical linguistics and
causal inference, and give an overview of the previous work in both areas that
my work is building on. I have tried my best to provide low-level entry points
to both subjects in order to make the book self-contained for readers who are
familiar with either the problem or the method, but I will sometimes need to use
linguistic or mathematical terminology that will not be understandable without
some background in either field. Chapter 3 also introduces the PC and FCI algo-
rithms that form the basis for my lexical flow algorithms in Chapters 6 and 7.

Chapter 4 then describes the long process by which I arrived at my test data. It
starts by describing the NorthEuraLex database, which was compiled under my
supervision as part of the dissertation project that ultimately became this book.
Comparing my own infrastructure to existing approaches to the same problems,
I then describe how the sound correspondences and cognacy relations between
the words for 1,016 concepts across 107 languages contained in the database were
estimated. The chapter concludes with a detailed look at the contact histories of
four subregions of Northern Eurasia, summarizing the findings into the gold-
standard of language contacts necessary for evaluating the lexical flow methods.

Complementing the first set of test data derived from actual language data and
the literature, Chapter 5 describes and motivates the simulation model which I
am using to generate large amounts of additional test data. In essence, in addition
to the four continent-sized areas where I have access to language data and the
language’s histories, I use the simulationmodel to investigate the performance of
mymethods on 50 additional generated histories ofmultiple interacting language
families sharing virtual continents.

Chapter 6 describes the core of my contribution to the field, detailing how
causal inference can be applied to cognacy overlap data in order to generate evo-
lutionary networks by what I call the Phylogenetic Lexical Flow Inference (PLFI)
algorithm.The core idea is to define a measure of conditional mutual information
between sets of languages, which quantifies how much of the lexical overlap be-
tween two groups of languages can be accounted for by transmission through a
third set of languages. While I explore several ways in which the explanation of
overlap can be modeled, the ultimately best-performing variant has an intuitive
interpretation in terms of lexical flow, building on possible paths by which each
word can have arrived in the languages where it is currently attested according

4



to the inferred cognacy data. Variants of the PC algorithm are then applied to
systematically perform conditional independence tests in order to progressively
remove links from a network representing pairwise overlaps, until we arrive at a
skeleton of links that are minimally necessary to explain the observable pattern
of lexical overlaps. In order to be able to apply the PC algorithm, ancestral lan-
guages (the source of cognate vocabulary) need to be modeled explicitly, which
requires reconstruction of cognate presence or absence on all nodes of a prede-
fined language tree, and then treating the reconstructed states as if they were
actually observed data.

Chapter 7 then explores what happens if we want to avoid building on recon-
structed states as an additional layer of inference, but want to build what I call a
contact flow network that only involves the attested languages. Inferring a con-
tact flow network is a somewhat less ambitious goal because tree inference and
ancestral state reconstruction are not required any longer, but it also means that
we are now faced with performing causal inference in the presence of hidden
common causes which act as confounders. This more complex type of causal in-
ference problem presupposes the use of the more complex FCI algorithm as the
basis for my own Contact Lexical Flow Inference (CLFI) algorithm. Since FCI
is even more sensitive to wrong conditional independence judgments than the
PC algorithm, applying it to the quite noisy automatically inferred cognate data
requires a specialized test of directionality.

Chapters 6 and 7 both include detailed discussions of the many problems these
approaches are still facing in a range of test cases, and conclude with a quanti-
tative evaluation of the new algorithms against both the gold standard and the
simulated language data.

The book concludes with a final chapter summarizing the results, and provid-
ing an outlook on future research. Much of this research will be focused either
on improving the quality of the input data (e.g. by improving automated cog-
nate detection), or on steps towards assigning confidence scores to the links in
the lexical flow networks, which is not yet possible based on the infrastructure
presented in this book. Beyond the possibility of quickly deriving a first approx-
imation of the history of a region from raw data, such refined versions of my
framework could potentially provide plausibility checks for existing theories as
well. In cases where the methods of classical historical linguistics cannot decide
between two alternative theories of contact history (usually due to difficulties in
weighting the evidence), the results of a statistical model could provide evidence
in the absence of hard proof.
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2 Foundations: Historical linguistics

The purpose of this chapter is to give readers with a causal inference background
sufficient knowledge of historical linguistics to arrive at a basic understanding
of the new application domain. For readers with a linguistics background, it may
serve as a quick overview of the relevant core definitions and issues of historical
linguistics as I am framing them for the purpose ofmywork, sometimes deviating
a little from the established terminology.

The second half of the chapter is of more interest to the linguist reader. It gives
a rough overview of existing computational approaches to modeling language
history, and discusses the current state of the art in reference to the methods of
classical historical linguistics.

For the exposition, I need to presuppose some basic knowledge of phonology,
or the sounds occurring in spoken languages. I will normally represent sounds
by means of the IPA (International Phonetic Alphabet), which has become the
standard across all branches of linguistics. To learnwhat these symbols represent,
I recommend Ladefoged&Maddieson (1996), the standard textbook of phonology.
For readers who are not interested in languages and their pronunciation, but
merely want to understand the methods I am developing and describing here,
it should also be possible to follow the discussion by treating the IPA as a bag
of elementary symbols (an alphabet in the formal sense), and not assigning any
meaning or properties to them.

2.1 Language relationship and family trees

While very encompassing definitions of language can be given, at the core, a
language such as English or Spanish can be seen as a system of symbols (vo-
cabulary) and combination rules (grammar) used for communication. From this
perspective, which is not shared by all traditions within linguistics, a language
consists of a collection of symbols (lexical items, such as them, give, or renais-
sance), and rules how these symbols can be combined (grammar rules, e.g. “to
combine an adjective with a noun, put the adjective in front of the noun”).
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Obviously, individual languages can differ vastly in both the symbols they use
and the grammar rules they use to recombine these symbols.While the sequences
of sounds used to form the symbols are largely arbitrary and only constrained
by limits on pronunciation and distinguishability, grammar rules in languages
across the world show much more similarity in structure. The commonalities
in the grammars of languages can be described in terms of typological features,
such as the very basic fact whether adjectives usually precede the noun (as in
English) or follow the noun (as in Spanish).

Just like most complex systems, human languages are constantly undergoing
change. While some parts of a language change less quickly than others (e.g.
words for body parts vs. slang terms), no part of a language is entirely immune
to change. Over the course of millennia, changes will accumulate to the point
were two languages which started out as dialects of the same language will end
up having no recognizable similarities except the ones dictated by universals,
constraints on the structure of human language which are ultimately rooted in
physiological or cognitive limits.

To give two concrete examples of language change, Old English (OE) from
about a thousand years ago, still distinguished different verb forms for the first
and second person singular (ic stele ‘I steal’ vs. þū stilst ‘you steal’, cf. thou stealest
from about 500 years ago), and a boy was called cnafa. Crucially, in addition
to such instances of grammatical change and lexical replacement, the phonetic
shapes of words will invariably change over time due to sound change. For in-
stance, OE cnafa [knɑvɑ] became the modern word knave [neɪv], where the [k]
is not pronounced any more, and the [ɑ] has been lengthened and then become
a diphthong [eɪ].

For various external reasons, one (typically more isolated) part of a language
community will sometimes not join in a change affecting the rest, or will un-
dergo a change whereas the other speakers of the language do not. This is the
prime mechanism by which a language can split into dialects, loosely defined as
mutually comprehensible, but different variants of the same language. As time
goes on, dialects tend to diverge further from each other, up to the point where
their speakers do not understand each other any longer, which is when we start
to call the former dialects separate languages. Since mutual comprehensibility is
a continuum, and the comprehensibility relationship is not transitive (there can
be dialect continua where each dialect remains comprehensible to its neighbors,
but dialects which are farther apart are different languages), the definition of
what we call a dialect and what a language is often arbitrary and not subject to
linguistic criteria.
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2.1 Language relationship and family trees

If we trace the development of one language as it recursively splits up into new
variants through the ages, we arrive at a tree-shaped pattern which is called a
phylogenetic tree. As an illustration, Figure 2.1 visualizes how various Germanic
languages are reconstructed as having developed out of a common ancestor lan-
guage, Proto-Germanic. The height dimension of the tree roughly represents the
time dimension, and builds on the estimated time depth of each intermediate
stage, i.e. the time at which the respective proto-language is assumed to have
split into its daughter languages. Some estimation of time depth is necessary for
all advanced methods of phylogenetic inference, but it is a hotly contested topic
because none of the methods for estimating time depth has led to full agreement
with the known history of families where proto-languages are attested by writ-
ten records. Today, historical linguists typically avoid talking about chronology
(“linguists don’t do dates”), due to a long history of premature conclusions which
later turned out to be mistaken. Still, in the case of Germanic languages, there
are sufficient historical records of many languages that the dates implied by the
vertical dimension of the tree are widely considered as very likely.

Languages which are descendants of the same proto-language are said to be-
long to the same language family. In practice, which languages are grouped to-
gether actually depends on whether the relationship between them has been
proven. A family is thus not different in nature from any of its subgroups defined
by a common proto-language, but whether we call it a family depends on the cur-
rent state of our knowledge. The current partition of the world’s languages into
about 400 families (about half of these with only a single member) has however
turned out to be remarkably stable for decades, indicating that the field might
find itself near to a maximum time depth where enough similarites survive to
prove genetic relationship. This maximum time depth is commonly assumed to
lie between 6,000 and 8,000 years ago, with older relationships provable in the
presence of old written records (as in the case of Afro-Asiatic, a family with a
time depth of about 10,000 years which includes ancient languages such as He-
brew, Akkadian, and Ancient Egyptian).

Within the Indo-European language family, the Germanic languages form a
taxon, i.e. a group of more closely related languages which in turn have a com-
mon ancestor. Often, families can be decomposed rather cleanly into several such
taxa, whereas the question which taxon split off first is often difficult to answer
and forms a large part of the debate among experts in the respective language
family. The established taxa frequently correspond to a time depth of around
2,000 years, when the similarities between descendant languages are usually still
so pervasive that the relationship is obvious to a layman taking a first glance at
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Figure 2.1: A (partial) phylogenetic tree of Germanic languages

10



2.2 Language contact and lateral connections

the basic vocabulary. For instance, it is quite obvious that English wife, German
Weib, Dutch wijf, Swedish viv, and Icelandic víf are essentially the same word,
and a dozen of these close parallels in basic vocabulary would be enough to de-
fine Germanic as a taxon. In contrast, proving that Armenian kin, Russian žena,
Irish bean, Icelandic kona, and Persian zan are related in very much the same
way, requires a lot more effort and expert knowledge, which is similar to the
situation in many other families.

2.2 Language contact and lateral connections

What complicates the picture of neat family trees depicting in which order the
languages of a family split off, is that languages are in contact with each other,
and that linguistic features do not only result from inheritance or random change,
but also from borrowing between languages which are in contact. To the non-
linguist reader, the term borrowing might seem slightly odd because the element
taken from the donor language is never given back in any sense, in which case
it helps to mentally equate borrowing with the copying of material. On the lex-
ical level, a loan or loanword is a word which gets copied by one language (the
recipient language) from another (the donor language).

English is a very good language for finding examples of contacts, as it rep-
resents a very interesting mix of inherited (Germanic) and borrowed (mostly
Romance) features. On the level of morphology, English features two competing
strategies of forming the comparative degree of an adjective, the Germanic suffix
-er as in larger or thicker, and the Romance-style pattern with more as in more
interesting or more relevant. The English lexicon is split roughly in half (Finken-
staedt & Wolff 1973), where the first half is dominated by basic vocabulary and
words for everyday items and phenomena, which are typically either inherited
from Proto-Germanic (eye, rain, hammer) or borrowed from other Germanic lan-
guages (window, wing, skin). The other half mainly consists of terms of science
and culture (science, pious, ignition), all of which were borrowed from Latin and
Romance languages. The convention is to consider the descent of the basic vo-
cabulary and grammatical features as the relation defining the tree (and thereby
the family membership), and to treat contact of any intensity as a secondary phe-
nomenon, which makes English a Germanic rather than a Romance language.

Still, the sometimes very visible effects of language contact have always caused
an undercurrent of historical linguistics to reject the tree model. Given the ubiq-
uity of language contact, the underlying assumption of the tree model that lan-
guages continue to evolve independently after each split, and treating continued
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contact as the exceptional case, might seem unnatural. People in this school of
thought have tended to adhere to an alternative wave model, which is based on
the observation that linguistic innovation tends to spread from a center to the
periphery. Sometimes, innovations will sweep across language boundaries in sit-
uations of language contact, which then leads to borrowing. A language split
occurs when a series of waves does not sweep across an entire language com-
munity. François (2014) provides a good recent overview of the theory behind
wave models, and argues why they are attractive for describing some patterns
of innovation. While generally accepted as well-suited for explaining areal phe-
nomena and dialect continua, the strong assumption of wave-model advocates
that any apparently tree-like signal in language evolution arises out of a pattern
of overlapping waves is not advocated by many historical linguists any longer.
While this view was once very popular due to certain phenomena in the his-
tory of Indo-European, it has been weakened by the abundance of quite clearly
tree-like patterns in language families since studied. From the perspective of in-
ference, wave models are problematic as well.The problem is that they have little
explanatory value in the individual case, since every observable situation can be
explained bymanymore different sequences of waves than sequences of splitting
events which generate trees.

2.3 Describing linguistic history

Historical investigations about any given language often amount to proposing et-
ymologies for words. An etymology is a description of a word’s history, typically
featuring either the informationwhichword in a reconstructed proto-language it
evolved from, fromwhich other language it was borrowed, or how it was derived
from lexical material which already existed in the language. For instance, the et-
ymology of the English word house is given by Kroonen (2013) as inherited from
a reconstructed Proto-Germanic word *hūsa-, which in turn is of obscure ori-
gin, although it might derive from a Proto-Indo-European root *kuH- ‘to cover’,
which would connect the word to e.g. Latin cutis ‘skin’ and Lithuanian kiautas
‘shell, rind, skin’. The etymologies one can establish thus vary in time depth, and
tracing a word’s history further into the past is a frequent type of contribution
which would in this case advance our knowledge of Germanic. Etymological dic-
tionaries for a single modern language will often include muchmore information
about additional senses and when they developed, as well as the first attestations
of some idioms involving the headword. This type of information is not required
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for the word to have an etymology, and most etymological dictionaries do not
include such information, often due to a lack of historical data.

In classical historical linguistics, words which are derived from the same word
in a common proto-language are called cognates, whereas borrowed words and
their descendants are not counted as belonging to the same cognacy class. While
the clean separation of inherited words and loanwords is crucial to the classi-
cal method, computational methods have tended to put less emphasis on this
distinction. This leads to a somewhat unfortunate difference in terminology be-
tween classical and computational historical linguistics, as the latter customarily
subsumes both inheritance and borrowing under the cognacy relation. As an al-
ternative term to cover this more liberal notion of cognacy, correlate has some
currency, but I opt not to use it here because of the otherwise confusing frequent
occurrence of the concept of correlates in the statistical sense in the text. Instead,
I will use true cognacy for the stricter classical sense whenever the distinction is
relevant, and otherwise stick to the more liberal usage established in computa-
tional historical linguistics.

Expanding on the basic distinction of inherited items and loans in the lexicon
of a language lexicon, descriptions of loanwords are usually more fine-grained.
Very often, loanwords of roughly the same age from the same donor languages
can be grouped into strata or layers. For instance, there is a rather thin stratum
of Celtic loans in English, which includes words such as basket, beak, and nook.
This Celtic stratum can be further subdivided into an Ancient Brittonic layer (to
which the mentioned words belong), and later borrowings from languages such
as Welsh (bard, crag) and Irish (galore, slogan). In effect, the lexicon of every lan-
guage can be split into an inherited core vocabulary, and a number of loanword
strata which came into the language at different times from different languages.

2.4 Classical methods

This section provides a concise introduction into the mindset and the methods
of classical historical linguistics, the discipline to which we owe the bulk of our
current knowledge about the history of the world’s languages, and against the
results of which computational methods are commonly evaluated. Historical lin-
guistics is a much broader field than a short introduction to core principles would
suggest, and the non-linguist reader is encouraged to explore the field in its
breadth by means of a handbook, such as the excellent recent one by Bowern
& Evans (2015).
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2.4.1 The comparative method

The primary tool of historical linguistics is the comparative method, a well-tested
set of principles which has been developing for about two centuries, and has
proven its worth as a tool for reconstructing the history of many language fami-
lies.The key idea is to build on the assumed (and rather robustly attested) regular-
ity of sound changes to reduce the likelihood that observed similarities between
words from different languages are only due to chance. For a group of languages,
relationship is then proven by reconstructing the sound inventory and the pho-
netic shape of many words in an assumed common proto-language, and then ex-
plaining how the known forms in each descendant language evolved from their
equivalent in the proto-language by a series of regular sound changes.

2.4.1.1 Sound correspondences

On the synchronic level, both inheritance and regular sound changes lead to re-
curring sound correspondences in cognate words. For instance, there is a fairly
regular sound correspondence between word-initial English p [pʰ] and German
pf [p͡f], as evidenced by pairs like pan/Pfanne, plum/Pflaume, and pluck/pflücken.
The last two examples show that we cannot expect one-to-one correspondences
across all comparable segments in cognate pairs: English u [ʌ] can apparently
correspond to German au [aʊ̯] or ü [ʏ]. The reason for such a one-to-many corre-
spondence can be either that two different phonemes have merged into English
[ʌ], or that one proto-phoneme diverged into the two German variants due to
a conditional sound law, i.e. a change which happened regularly in a specific
phonological context, which might have left no traces in the observable forms.

2.4.1.2 Sound laws

In the Neogrammarian view, the sound correspondences between related lan-
guages are the result of sound laws, i.e. regular phonetic changes which occurred
while the languages developed from their common proto-language. In the sim-
plest case, a sound change replaces all occurrences of some sound by a different
one. However, in reality, sound laws almost never occur unconditionally, i.e. they
will typically only apply in a certain phonetic context (such as between vowels,
or in stressed syllables). Due to this context dependency, sound changes can in-
crease the number of phonemes in a language, whereas unconditional rules could
only keep the number of phonemes constant (if the resulting phoneme was not
present in the language before), or decrease it (if two phonemes merge). For in-
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stance, the phoneme /t͡ʃ/ that is written ch in modern English, did not exist in
West Germanic, and only developed during the Anglo-Frisian stage in a rather
common process called palatalization, where velar plosives become palatals (of-
ten affricates) under the influence of adjacent front vowels. In other contexts,
ancestral [k] was left untouched. This explains the seemingly irregular sound
correspondence between English choose (Old English ċēosan) and Dutch kiezen,
whereas we have [k] in both English cat and its Dutch cognate kat.

The crucial idea of the Neogrammarian school of linguists is that such sound
laws apply without exception, i.e. they apply to all instances of a sound in a
particular context throughout the words of a language. These contexts can be
quite complex, as can quickly be demonstrated using English and German. The
sound lawwhich produced the mentioned p/pf correspondence between English
and German is part of the second phase of the High German consonant shift.
By comparing the contexts in which this correspondence as well as analogous
instances of affricatization ([t] → [t͡s] and [k] → [k͡x]) occur, one finds that the
law must have applied in four distinct contexts: word-initially, when geminated
([pː],[tː],[kː]), after liquids ([l] and [r]), and after nasals ([m] and [n]). For the p/pf
pair, we have already seen examples of the first context. Instances of the second
context are apple/Apfel and copper/Kupfer. The liquid context is exemplified by
carp/Karpfen, and as examples of the nasal context we have swamp/Sumpf and
cramp/Krampf. This pattern reliably repeats itself across all the lexical material
which both languages inherited from West Germanic.

Since sound changes are historical events which happen during a short time-
frame, the laws which shaped the history of a language can be arranged into a
sequence in which they occurred. Because sound laws frequently interact (e.g. if
one change creates a context where the next law can apply), we can often derive
constraints on the possible order in which they must have occurred, leading at
least to a partial relative chronology. For instance, we know that the third stage of
the High German consonant shift, which in some German dialects turned voiced
plosives into voiceless ones (e.g. [b] → [p]), must have occurred after affrica-
tization, because the voiceless stops would otherwise have become affricatized
in turn. We can exlude this order of events based on the fact that the German
cognate of English bread is not *Pfrot, but Brot, which is pronounced something
like [b̥ʀoːt] in the dialects which underwent the third stage of the shift.

While we frequently can derive constraints on the relative order of sound
changes in this way, an absolute chronology of sound changes is much more
difficult to derive. Typically, it is necessary to rely on historical knowledge or
written sources for this. For instance, we know for certain that the High German
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sound shift must have happened before the 8th century, because Old High Ger-
man texts from that time already display the results of that change. For written
languages where we have no written sources in scripts which reveal the phonol-
ogy, a (partial) relative chronology is often the best we can arrive at.

2.4.1.3 Distinguishing inherited words from loans

Thework of establishing sound changes and their chronology is necessarily based
on reflexes of the same proto-words across descendant languages. The ground-
work of historical linguistics has therefore always revolved around the tasks of
finding true cognates, distinguishing them from loans, and separating the loan-
words in each language neatly into strata. This sometimes very complicated task
forms the necessary preparatory work for later higher-level steps such as de-
termining isoglosses, and reconstructing proto-languages in order to establish
phylogenetic units.

In addition to reducing the likelihood of words becoming similar due to chance,
the regularity of sound change also provides us with the most important source
of hints about the etymology of words, especially when deciding whether some
word was inherited, or borrowed from a sister language. For instance, the Proto-
Germanic shift from [k] to [h] is enough to prove that Latin cellarium ‘pantry’
and German Keller ‘cellar’ cannot be true cognates, because we would expect
something like *Heller in this case. Although interactions between sound laws,
and gaps in our knowledge about them, can make this type of argument quite
complex, it is typically possible to recognize non-cognates, and estimate the time
at which they were borrowed, for a large portion of a language’s basic lexicon.

2.4.1.4 Reconstructing ancestral forms

With cognate sets and sound laws established, in theory it should become an
almost mechanical task to project the attested words back to reconstructed proto-
forms by reverse application of the sound laws. If this back-projection does not
lead to the same proto-form if we start from different descendant languages, this
is a hint that some of our current hypotheses about sound laws and cognacy
relations must be wrong, and provides us with clues about the ways in which
our theory needs to be revised.

In practice, there are many phenomena which complicate the picture, and
make reconstruction of ancestral forms a non-trivial task. The most pervasive
of these is analogy, which subsumes a variety of very frequently occurring phe-
nomena by which irregular changes can happen whenever the result becomes
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in some way easier to represent and process than the initial form. To quote two
of the many examples given by Campbell (1999) in his introduction to historical
linguistics, the vowel contrast between the English adjective old and its old com-
parative form elder (which still survives in elder brother) became leveled to yield
current older, and German Natter is cognate with English adder, which lost its
initial n due to reanalysis of its combination with the indefinite article, such that
a nadder became an adder.

To give another more complex example from a different language family, the
Proto-Uralic words *ükte and *kakta are one possible reconstruction for the num-
bers ‘one’ and ‘two’.The latter should have resulted in Finnish *kahda- by regular
sound change, but the actual form is kahde-. In contrast, Finnish yhde- ‘one’ is
the completely regular result of applying known sound laws to *ükte. It is gener-
ally assumed that the irregular form kahde- received its final vowel by analogy,
making the words for the two numbers more similar. The decision that *kakta
and not *ükte is the word that was reshaped is necessarily based on reflexes in
other branches of Uralic, which demonstrates why analogy complicates recon-
struction. In fact, because irregular changes also appear to have happened to
*kakta in other branches of Uralic, there is still no consensus whether *kakta is
actually the correct reconstruction.

Explanations involving analogy are very common in etymological research,
and it seems that analogy is a force just as important as regular sound change
in shaping words. For historical linguistics, relying too much on analogy when
explaining word forms is quite risky, because allowing almost arbitrary sporadic
changes to apply to only one or a few words makes it much easier to fit forms to
any reconstructions, detracting from the strength of the method.

2.4.1.5 Establishing phylogenies

By reconstructing ancestral proto-forms for a set of cognates in a set of attested
languages, and proving that the regular sound changes and additional assump-
tions such as analogies correctly generate the different attested forms from the
reconstructed form, a historical linguist proves that the attested languages form
a phylogenetic unit. By reconstructing older proto-languages as common ances-
tors of already established younger ones, it should in principle be possible to
establish the entire phylogenetic tree of a language family, detailing in which or-
der various genera split off the common proto-language, and how these in turn
split into the attested languages.

If we continue this reconstruction process through the ages, shouldn’t it be
possible to trace the history of each language back to very few large families?

17



2 Foundations: Historical linguistics

If one assumes monogenesis, i.e. that human language has only developed once,
and not independently in different places, one could even imagine deriving a
world tree, detailing how the modern human languages developed out of a single
ancestral language of humankind.

Unsurprisingly, there are limits to the comparative method preventing us from
getting this far. The more sound changes accumulate through the ages (espe-
cially under complicated conditions), the more indistinguishable the inherited
similarities will be from chance similarities. To still isolate individual sound laws
and unravel in which contexts and in which order they applied, we would need
ever larger numbers of cognacy candidates. The most serious limitation for the
method therefore lies in the fact that cognate density actually decreases. Due
to semantic change, lexical replacement, and borrowing, the cognates shared be-
tween two related languages are bound to get lost with time. Since every lan-
guage has only a finite number of basic lexemes, already after a few millennia
the languages will cease to share enough cognates for regular sound correspon-
dences to be established, and the comparative method ceases to work.

For well-documented language families, the limits of the comparative method
in terms of establishing deep ancestry appear to have been reached quite some
time ago. What is more, many families which are generally considered estab-
lished (such as Afroasiatic, and Sino-Tibetan) are not proven as genetic units in
the strict sense, as there are no single widely accepted reconstructions of the
respective proto-languages. The maximum age of phylogenetic units which can
still be safely established using the comparative method seems to lie at between
6,000 and 8,000 years before present, which leads us far into prehistory in most
parts of the world, but is a far cry from being able to get back to the times when
e.g. the Americas or Australia were settled. Any method which tries to answer
questions at higher time depths based on language data will need to resort to sta-
tistical arguments, or typological similarities, both of which cannot rule out the
possibilities of chance similarity (a risk which is high for typological variables
due to universals) and ancient contact.

2.4.1.6 Shared retentions and innovations

But the methodological limits of the comparative method do not only appear at
high time depths, but also when making family-internal classification decisions.
To reliably separate one taxon from the rest of the family, the amount of lexi-
cal overlap in terms of shared cognates is considered an insufficient criterion.
Even if we excluded the possibility of borrowing, a larger-than-average lexical
overlap between two languages we want to group together can still be either
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due to shared retentions (the languages outside the group under consideration
changed) or shared innovations (the change happened from the proto-language
of the family to the taxon we are trying to establish). The existence of correspon-
dences alone does not yet allow us to decide whether we are dealing with shared
retentions or innovations.Themain reason whymany subgroupings which seem
obvious on a lexical level are sometimes not generally accepted is that quite of-
ten, the hypothetical common proto-language is so close to the proto-language
of the entire family that no regular changes can be detected to define the transi-
tion between the two proto-languages. The requirement of demonstrable shared
innovations often severely limits the ability of classical historical linguists to
clarify the internal structure of a language family beyond the level of securely
established branches.

2.4.2 Theories of lexical contact

Whenever speakers of two different languages get in intensive contact with each
other, this will invariably leave traces in those languages. According to Hock &
Joseph (1996: Section 8.5), the main variable deciding about the shape of lexi-
cal influence between two languages is the difference in prestige. This differ-
ence is the standard explanation for the fact that languages do not only borrow
neededwords for new concepts (such as GermanComputer and Internet), but also
tend to replace perfectly workable and well-established terms for some concepts
with those from a prestige language (German Service instead of Dienstleistung, or
Ticket instead of Fahrkarte).

As Thomason & Kaufman (1988) elaborate in their analysis of contact situa-
tions, the decisive factor determining how a contact situation between a high-
prestige and a low-prestige language plays out is whether it occurs under condi-
tions of maintaining the low-prestige language, or language shift towards the
high-prestige language. The first scenario will typically lead to a situation of
widespread bilingualism, where even words for basic concepts tend to be re-
placed by their borrowed equivalents, as the familarity of the bilinguals with
the higher-prestige language increases at the expense of the lower-prestige re-
cipient language. The situation where the prestige gradient is not too high, and
both languages continue to coexist for many generations, is the one where one
would expect the largest amount of borrowings even of basic vocabulary items.
The words borrowed from a language of comparable prestige are said to form an
adstratum. For instance, English has a North Germanic adstratum from the time
when the Vikings settled large parts of England, and started to intermarry with
the local population. Words borrowed by English during this time include very
basic vocabulary items such as to take and they.
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In the second scenario, the target language is learned imperfectly by shifting
speakers, which tend to retain many phonological and syntactic features of the
original language, but typically not much lexical material except terms for local
plants and animals. If the number of shifting speakers is demographically rel-
evant, the structural substrate influence will result in a changed variant of the
target language. A case in point is the Western Uralic substrate in Russian which
shows itself in certain syntactic features which set Russian apart from its Slavic
sister languages, such as the lack of a copula in the present tense, and the exten-
sive use of the partitive genitive.

In the case where both languages are maintained (i.e. in the absence of lan-
guage shift), Thomason & Kaufman (1988) distinguish five degrees of contact in-
tensity, each with characteristic manifestations in the extent of lexical and struc-
tural borrowing. The first three stages represent different degrees of lexical bor-
rowing, with accompanying weak structural borrowing that does not cause any
shifts in the typological profile. Under circumstances of casual contact, we would
only expect content words to be borrowed, and typically non-basic vocabulary.
Under slightly more intense contact, conjunctions and adverbial particles will
be among the first structural elements which are taken over. Only under very
intense contact will we observe borrowing of other function words such as ad-
positions, pronouns, and low numerals. Bound morphemes such as derivational
affixes may also be transferred at this stage, and they can stay functional in the
borrowing language. The last two stages describe situations of strong and very
strong cultural pressure, where the structural influence is so strong that typolog-
ical changes can occur. On the lexical level, contact of this intensity will lead to
massive borrowing which can even replace large parts of the basic vocabulary.

2.4.2.1 Types of borrowing

In the bilingual environment where most lexical borrowings occur, a loanword
is initially borrowed in its original phonetic shape. With time, loans tend to get
nativized by sound changes, often up to a point where they are not recognizably
foreign any longer. An instance of this is German Fenster ‘window’, which was
borrowed from Latin fenestra into Old High German, i.e. more than a thousand
years ago. Without knowledge of Latin, no native speaker of German would sus-
pect that this wordwas not inherited from the parent language. By contrast, more
recent loans in German, such as E-Mail from English, tend to contain sounds for-
eign to German (the diphthong [eɪ]), or to deviate from the usual orthographic
rules (the long vowel [iː] written as e, instead of ie or ih), and are therefore in-
stantly recognized as loanwords.
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While from the perspective of cognacy, borrowing across families will tend to
be detectable as words from a different cognate class, the quite common situation
of internal borrowing within the same language family often leads to a word
getting replaced by a cognate word from a sister language. For instance, this is
what happened with the English word guard, which replaced older ward by a
cognate borrowed from Frankish via French, where a regular sound change from
[w] to [ɡ] had occurred (cf.William vs.Guillaume). Both cross-family and family-
internal borrowing will commonly happen whenever living languages come into
close contact.

A lot less frequently, words can also be borrowed from ancient languages,
which might even be direct ancestors of the recipient language. This tends to
happenwith high-prestige written languages that persist as languages of religion
or science. The most well-known examples are Latin in Western and Southern
Europe, from which Romance languages did not only inherit, but also borrow
words, and Sanskrit, which plays the same role across India. Less well-known
examples of the same pattern include Old Church Slavonic, from which many
words were borrowed into later East Slavic languages such as Russian, and the
influence of Pali, the Middle Indo-Aryan language of Theravada Buddhism, on
many languages of Southeast Asia. If a language borrows from its own ances-
tor or a close relative, this very frequently leads to doublets like the guard/ward
example, which are also called etymological twins. For instance, the Latin word
dīrectus developed into French droit under regular sound change, but the word
direct was later borrowed into French in addition, where the two words now
coexist.

In addition to loanwords, calques are the second important type of lexical bor-
rowing. A calque, also called loan translation, is a derived word which is com-
posed of native lexical material after the model of a derived word in another
language. For instance, the Hungarian összefüggés ‘correlation’ is composed of
the native lexemes össze ‘together’ and függ ‘to hang’ after the model of Ger-
man Zusammenhang ‘correlation’, literally ‘hanging-together’. Massive calquing
tends to occur when the vocabulary of a language needs to be expanded rapidly
to areas of life that it was not previously applied to (e.g. science or technology),
and is especially pervasive when compounding is a preferred word formation
strategy in both the model language and the newly expanded one, as has been
the case for German and Hungarian. The term ‘borrowing’ as used in this book
does not include calques.
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2.4.2.2 Constraints on borrowing

As Haspelmath (2008) states in his summary of loanword typology, an essential
step towards a theory of language contact is to determine possible constraints
governing which elements of a language are more likely to be borrowed, and
in which order elements will be borrowed under intensive contact. From the
viewpoint of historical linguistics, understanding these constraints can help to
decide open questions in language classification. In the context of the present
volume, this knowledge will be of some use in interpreting results, and feeds into
the design of a simulation model of some aspects of actually occurring lexical
transfer.

The most striking initial observation about borrowability is that the number
of content words which can be transferred during intensive contacts seems al-
most unconstrained. Less than half of the vocabulary of modern English is of
Germanic descent, and Armenian has borrowed so many words from neighbor-
ing Iranian languages that its nature as a separate branch of Indo-European was
only recognized very late in the history of Indo-European linguistics. However,
we have already seen that words for the most basic vocabulary are typically ex-
changed only among languages of roughly equal prestige in long-term contact.
This kind of contact is historically quite rare at least in the regions of the world
that I will be concerned with here, meaning that basic vocabulary will be a very
good predictor of genetic affiliation.

Beyond such general statements about basic and non-basic vocabulary, schol-
ars have established some non-trivial constraints on the borrowability of differ-
ent parts of the lexicon which seem worth mentioning. For instance, an impor-
tant factor to which much influence has been attributed is the typological dis-
tance between the donor and recipient languages, because very different gram-
mars make it harder to copy words, let alone grammatical features, without caus-
ing major changes to the recipient language’s system. This helps to explain why
conjunctions and adverbial particles are borrowed more often than other func-
tional items. These elements belong to smaller subsystems which tend to be less
integrated with the rest of the grammatical system, and are thus more likely to
be integrable into the structural fabric of the borrowing language.

Calling into question the predictive power of such theories,Thomason & Kauf-
man (1988) attack the central role attributed to structural incompatibility as an
explanation of resistance to lexical borrowing. Based on some very interesting
extreme cases, they argue that any prediction about which parts of the lexicon
and the grammatical structure are susceptible to borrowing will mainly need to
build on sociolinguistic factors. Under social circumstances which are conducive
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to moderate borrowing, however, typological compatibility still appears to in-
fluence the extent of structural borrowing, sometimes leading to more intensive
interference than one would expect at the given intensity of contact.

Beyond compatibility, an important inhibiting factor for the borrowability of
a feature appears to be its overall typological markedness. For instance, mor-
phemes which express more than one function (such as the combined case and
number markers of Indo-European languages) are less likely to be borrowed
than the typologically more common clearly separable and single-function mor-
phemes (such as case endings of agglutinating languages). Beyond such individ-
ual cases, if we consider morphological means to express functions as generally
more marked than syntactic means, this general principle can also explain the
tendency for morphological complexity to reduce in contact situations.

On the lexical layer, there are differences in borrowability between different
types of content words. Most prominently, nouns are borrowed more easily than
verbs.This long-held viewwas substantiated by vanHout &Muysken (1994), who
statistically analysed texts for different factors which predict the borrowability
of lexical items from Spanish into Quechua. Their explanation for finding many
more borrowed nouns than verbs is the motivation of extending referential po-
tential, i.e. giving words to new things. Since new things which need a name
are much more common than new actions, this explains the higher borrowabil-
ity of nouns. But they also find a signal in favor of borrowing lexemes which
show little inflection in the donor language. The latter finding ties in well with
the theory of language contact developed by Myers-Scotton (2002: Ch. 6), who
argues that the main reason for the higher borrowability of nouns as opposed
to verbs is that introducing foreign noun phrases tends to be less disruptive to
predicate-argument structure.

A well-known phenomenon that can be interpreted as reinforcing this the-
ory was first observed by Moravcsik (1975), who claimed that words for verbal
concepts are never borrowed as verbs, and only become borrowable as nomi-
nalizations. The part of this extreme claim which still remains valid today in the
presence of much more evidence is that languages with complex verbal morphol-
ogy do not tend to borrow verb stems from other languages, nor act as donors of
verbal stems. Instead, verbal concepts are muchmore likely to be borrowed in the
shape of nouns, typically in the form of a source-language nominalization which
is then combined with a light verb meaning ‘to do’. For instance, this pattern
appears very strongly in the Arabic influence on the languages of many Islamic
cultures.The Semitic root-patternmorphology is so alien to languages from other
families, that they will only borrow verbs in a nominalized form. For instance,
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the Arabic verb daʿāʾ ‘to summon’ was borrowed as a verbal noun (duʿāʾ) into
languages from other families, where it was combined with native light verbs
to express the concept of praying. In Persian, this gives us do’â kardan ‘to pray’,
whereas the Turkish and Uzbek equivalents are dua etmek and duo qilmoq, re-
spectively. This strategy of integrating Arabic loans is extremely common in all
major Iranian and Turkic languages. Instances of the same strategy are observed
many times across the globe byWichmann&Wohlgemuth (2008), who place it at
the lower end of a tentative loan verb integration hierarchy. The partial cognacy
relations which result from this type of borrowing become a problem for any
attempt to automatically partition the words for a given concept across many
languages into cognate classes.

2.4.2.3 Mixed languages

Some languages have interacted with other languages to such a degree that their
genetic affiliation becomes difficult to define. The most common type of such
mixed languages are the creoles, fully developed languages which come into be-
ing when a pidgin, a simplified auxiliary language as it tends to arise when speak-
ers of very different languages need to communicate, gets nativized by children
growing up with the pidgin as their primary language.

The prototypical creole languages all arose from colonization, where the colo-
nial language invariably operates as the lexifier of the creole language, i.e. virtu-
ally the entire lexicon is inherited from the colonial language, albeit undergoing
sometimes significant semantic change. The substrate influence of the other lan-
guage is seen in the grammatical structure (which often retains little similarity
with the lexifier), and often in collocations and idioms. For instance, Tok Pisin,
the national language of Papua New Guinea, is an English-based creole where
the word gras ‘grass’ has taken on the primary meaning ‘hair’, via the indige-
nous conceptualization of hair as gras bilong het ‘grass belonging to the head’.
But apart from the prototypical colonial situation, other languages are sometimes
discussed as possibly being creoles as well, especially whenmassive shifts within
the grammatical systems can be shown to have occurred within few generations.
Themost famous example of this is English itself, which was heavily restructured
during the Middle English period, losing almost all inflected forms and becoming
extremely simplified in the remaining inflections such as plural formation. What
makes this case less prototypical is that the two involved languages were related
(making structural borrowing much easier), and that there was no clear devel-
opmental gap between the two cultures which would have ensured dominance.
This also explains why in this case, the lower-prestige language would have to
be treated as the lexifier.
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While mixed languages can be difficult to classify in terms of phylogeny if our
desire is to trace the development of the entire language system, on the descrip-
tion level of the lexicon, which the work described here is confining itself to, it is
entirely unproblematic to just model creoles as immediate descendants of their
lexifiers. Therefore, we do not need to be too concerned here with languages that
might not have a clear position in a phylogenetic tree, and we can always assume
an underlying tree-shaped skeleton to exist in our networks. On the lexical level,
one could summarize the position I am taking as follows: there are no equal mix-
tures of languages, there are only admixtures. In biological terms, we have no
hybridization, but potentially massive horizontal gene transfer.

2.5 Automated methods

Looking up many words in dictionaries, cross-referencing them and constantly
re-performing these steps when revising earlier findings while solving the puz-
zle of a language family’s development, can be a very time-consuming and even
tedious task. Not surprisingly, the potential advantages of being able to automate
subtasks in historical linguistics were seen as soon as computing technology be-
came performant enough to operate on large quantities of string data.

The earliest example of applying computers to a problem of historical linguists
I was able to find is Hewson (1974), who uses predefined correspondences be-
tween Algonquian languages and simple sequences of substitutions to gener-
ate all possible projections from attested words into possible Proto-Algonquian
forms, and filters out all candidate forms which are reconstructable by some se-
quence of substitutions from each modern form to arrive at a consistent recon-
struction hypothesis. According to the author, this procedure resulted in the de-
tection of 250 previously unknown cognate sets, and was then used as a core for
a computer-generated etymological dictionary. From the description it is clear
that the system exploits much previous knowledge, both in the representation
and preprocessing of the input data, which will not be easily transferable to other
language families.

One step closer to modern statistical methods, the COGNATE system first pre-
sented in Guy (1984) estimated the probability of sound correspondences using
chi-square tests on a sound co-occurrence table based on string positions. The
system was evaluated on 300-word lists from 75 languages of Vanuatu, and is
reported to have yielded satisfactory results for closely related languages. Unfor-
tunately, neither the system nor the test data appear to remain available.

Embleton (1986) summarizes early developments in lexicostatistics, but also
foreshadows many of the approaches and concepts which still figure centrally
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in phylogenetic inference. For instance, Embleton proposes the use of clustering
algorithms for deriving phylogenetic trees (including branch lengths) from cog-
nate data, and uses a simulation model to analyze the amount of skew in tree
inference introduced by borrowing. The discussion also addresses many of the
major issues that the field is still struggling to solve, such as the lack of truly
independent linguistic features, or the problems caused by selection bias in lists
of shared roots or grammatical features that are extracted from the specialist
literature.

A factor which hampered progress in this andmany other computational fields
was the lack of sufficient computing power for testing the already quite ad-
vanced algorithmic ideas of these pioneers of computational historical linguis-
tics on substantial amounts of data. When it became clear that these limitations
made the early tools too inflexible und unwieldy to attain general acceptance
and widespread use among historical linguists, the field did not see any work for
about a decade. It was only in the late 1990s that the successes of computational
methods in biology inspired a second wave of attention for introducing automa-
tization into other branches of science where the gene metaphor seemed fruitful.
Among others, these included literary studies (tracing how works were derived
from each other), anthropology (attempting to reconstruct ancient systems of
kinship), and linguistics.

This section gives a rough overview of recent developments in applying com-
putational methods to answering questions of relevance to historical linguistics.
The discussion is restricted tomethods which attempt to find answers to concrete
questions about the past of words and languages, and does not include more gen-
eral results which can be derived from large databases, such as computational
proofs of claimed typological universals like sound symbolism, or global correla-
tions involving extralinguistic features such as altitude, climate, and population
size.

2.5.1 Lexical databases

The most basic prerequisite for any computational study in historical linguistics
is an electronic database which contains the information a linguist would look up
in dictionaries or other sources in a standardized format which can be processed
by a computer. The absence of such databases has been one of the limiting fac-
tors in the expansion of the field, but some very useful resources have become
available during the past decade, and the pace at which new resources appear
seems to be accelerating.
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While databases of typological features have only recently started to receive
broad attention, most work so far has been performed on representations of the
basic lexicon across a relevant set of languages. Such lexical databases either
contain phonetic forms representing the realizations of a concept across the rel-
evant languages in a unified format, or, especially when they cover data within
well-known families, the realizations are cognacy-coded.The advantages and dis-
advantages of these types of databases, as well as examples of both types, are
discussed in this section.

2.5.1.1 Databases of phonetic forms

The easiest way to generate some computationally tractable data about a set of
languages is to take a list of basic concepts (the words for which still tend to be
cognate amongmore distantly related languages), and dictionaries, and then digi-
talize the relevant entries, transcribing them from the orthography or the format
used in the source into some cross-linguistically applicable string format, usually
over some phonetic alphabet which allows to represent all the phonemes of the
language family of interest. Many factors complicate this basic procedure, such
as the need to bridge different gloss languages in different sources, the low avail-
ability of unpublished resources like fieldnotes, inadequate phonetic descriptions
which make it impossible to reconstruct the pronunciation at the desired level
of detail, grammatical properties which make expert knowledge necessary to
isolate the relevant parts of dictionary forms, and imprecise glosses which leave
the compiler without certainty that the intended concept wasmatched. Still, with
some experience, very little is needed to compile a database of phonetic forms
corresponding to a list of basic concepts. This is the main advantage of settling
for phonetic forms, as opposed to more high-level data.

The earliest major effort to create a computer-readable database of basic vo-
cabulary was part of the Automated Similarity Judgment Program (ASJP). The
ASJP database aims to cover the words for 40 basic concepts across all docu-
mented languages, in a rather rough, but unified phonetic transcription. Version
18 (Wichmann et al. 2018), the most recent version available at the time of writ-
ing, includes 7,655 wordlists. While some of these wordlists do not correspond to
different languages, but variants of the same language, the number of languages
still approaches about two thirds of the global estimate of currently spoken lan-
guages. Altogether, the database approaches a size of 310,000 entries, making it
by far the largest currently available resource in one consistent format. Over the
years, previous versions of ASJP have been used to investigate many linguistic
questions like the stability of concepts against borrowing and semantic change,
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the question whether sound symbolism creates problematic amounts of lexical
similarity between unrelated languages, and correlations between phoneme in-
ventories and extralinguistic factors such as population size or geographic isola-
tion.

More recently, Greenhill (2015) presented TransNewGuinea.org, a database
covering more than 1,000 languages and dialects of New Guinea. The database
represents amassive effort tomake lexical data on the basic vocabulary of Papuan
languages, the least well-studied linguistic region of the world, readily available
to a wider public on the web. Building on a list of 1027 lexical meanings, various
types of published and unpublished resources were processed to build a database
in a unified phonetic format that can be processed by computational tools. Due to
the very sparse documentation of many languages, at the time of publication the
total size of the database had only reached about 145,000 entries, or an average
of just over 140 words per language. Work to expand the database by cognacy
judgments is under way, but since the bulk of available material has already been
processed, it will not be possible for this database to become much larger.

The Chirila database of Australian languages by Bowern (2016) is another good
example of a database spanning an entire linguistic region, with the goal to even-
tually make all known lexical data available. Due to the complicated legal situa-
tion when publishing full resources, and a cultural bias of many linguistic groups
against giving outsiders access to their languages, only 230,000 of about a million
database entries are freely available at the moment, but even this lower number
puts Chirila among the largest available databases. In addition to documenting
the word forms in the original sources, much effort is put into clarifying or recon-
structing the most likely pronunciation in order to arrive at standardized phone-
mic representations.

TheNorthEuraLex (North Eurasian Lexicon) database first presented in Dellert
(2015) is similar to the previous two databases in its aim to cover an entire linguis-
tic area, but has the advantage of containing only very few gaps despite covering
1,016 concepts, which is only possible due to the much better documentation of
minority languages in Europe and Russia. The version of NorthEuraLex which I
will be using for evaluation covers 107 languages, making it comparable in size to
the released parts of the Papuan and Australian databases. Since the compilation
of NorthEuraLex was a substantial part of the necessary preparatory work for
my experiments, as it provides the gold standard for evaluating my lexical flow
methods, it will be discussed in much more detail in Chapter 4.

The examples of databases just listed are only the tip of an iceberg of smaller of-
ten unpublished databases which cover a single language family or the minority
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languages of one country. As can be seen from the recent dates of most publica-
tions, there has been an explosion in the number of large-scale lexical database
projects during the last two years, a trend which can be expected to gain traction
as the field continues to grow.

2.5.1.2 Cognate databases

The other type of lexical database does not consider the phonetic forms of pri-
mary importance, but encodes the presence or absence of cognate classes in each
individual language. A phonetic database would focus on the information that
the words for hand in Armenian, Albanian, Greek, and Georgian are [d͡zεrkʰ],
[dɔɾə], [çeɾi], and [χεlɪ], allowing a program to compare these strings in order
to figure out whether they are related. In contrast, a cognate database would not
provide the three words in a unified phonetic format, but instead encode the in-
formation that the first three words are cognates, while the fourth is unrelated,
by assigning a 1 to the first three languages and a 0 to Georgian in a column
encoding the absence or presence of this cognate set.

The advantages of cognacy encoding are that binary characters are easier to
handle computationally, and that many disturbing factors such as loanwords or
morphology are already filtered out during data preparation, leading to much
cleaner data. The disadvantage is that cognacy-encoded databases need to be
compiled either by experts in the history of the respective language family, or by
going through the published etymological literature in language families where
such work exists. Both approaches require an enormous amount of work, which
makes typical cognacy-annotated databases much smaller than phonetic form
databases, and also limits the number of language families for which they are
available.

A very early cognate database is the Dyen database which formed the basis of
Dyen et al. (1992), an early lexicostatistical study of Indo-European.The database
is a small and rather unreliable resource (Geisler & List 2010) which covers 200
concept across 84 Indo-European languages in cognacy-encoded form. After sub-
stantial revisions, it today forms the core of IELex (Dunn 2015), a database of in-
creased quality which is continuously being updated, andwill soon be released in
a major revision. The most recent publicly available version groups about 35,000
words into 5,000 cognate sets.

An equivalent of IELex for the Uralic language family is collected under the
name UraLex.The latest available version of UraLex was published together with
a phylogenetic analysis of the data by Syrjänen et al. (2013), when the database
covered 226 concepts across 17 languages. Given the small size but high time
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depth of the language family, the very distributed state of etymological informa-
tion, and considerable disagreement between different authors, even compilation
of this small database has certainly been a substantial effort.

By far the largest effort so far is the Austronesian Basic Vocabulary Database
(ABVD) compiled by Greenhill et al. (2008), which covers 210 concepts across
more than 1,400 languages, providing virtually complete coverage of the world’s
largest language family. ABVD partially relies on orthographic forms instead of
a fully unified transcription, otherwise it would provide another phonetic form
database of a size comparable to the ASJP database, due to its deeper coverage of
individual languages. What makes this database unique, however, is that words
from a sample of 400 languages (an earlier version of the database) are grouped
into more than 34,000 cognate sets.The low time depth of many genetic subunits
tends to make these cognate sets a little less interesting than the long-distance
cognates from the other databases, but the cognacy-annotated part of ABVD is
poised to remain the largest database with expert cognacy annotations for quite
some time.

2.5.2 Phylogenetic inference

A major focus of computational historical linguistics has been phylogenetic in-
ference, i.e. the task of inferring phylogenetic trees from language data. The bulk
of work in phylogenetic inference has been character-based, typically building
on cognacy data encoded in such a way that the presence of each cognate class is
treated as a binary character. The older distance-based methods, where a single
distance matrix between languages (which can be computed from string data in
many different ways) is used to extract tree-like signals, have recently regained
some popularity, especially for investigating language families where cognacy-
encoded databases do not exist.

Phylogenetic inference already was a well-developed branch of bioinformat-
ics when it started to be applied to large amounts of language data. Computing
an optimal tree is inherently a very demanding problem because already the
number of possible tree topologies over 𝑘 languages rises super-exponentially
with 𝑘, and this does not yet include the inference of branch lengths. Exhaustive
optimization according to some optimality criterion is therefore not an option.
Instead, heuristic methods are employed, with the risk of hitting a local instead
of the global optimum. The following summary is based on Felsenstein (2004), a
very popular book-length introduction to phylogenetic tree inference which is
also recommended to the reader as an entry point to the field.
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Phylogenetic inference methods can be classified as either distance-based or
character-based. The distance-based case is the more general one, because any
character-encoded dataset can be reduced to a distance matrix in a number of
ways. However, the loss of information caused by reducing a character matrix
into a simple language distance matrix will typically lead to lower-quality results,
so that distance-based method will not typically be used if character-encoded
data is available.

Assumewewant to infer the best tree from a distancematrix. An ideal distance
matrix would correspond directly to some tree by having the property that for
any triple𝐴, 𝐵, 𝐶 with structure ((𝐴, 𝐵), 𝐶) [i.e𝐴 and 𝐵 are closer, and 𝐶 more dis-
tantly related], the distance measure fulfills the conditions 𝑑(𝐴, 𝐵) < 𝑑(𝐴, 𝐶) and
𝑑(𝐴, 𝐵) < 𝑑(𝐵, 𝐶). However, a distance matrix which unambiguously encodes a
single tree topology is rarely observed in practice. The reason can be noise in-
troduced by errors in the underlying data, an inadequate distance measure, or a
real non-tree-like signal resulting e.g. from loanwords in linguistics, or from hor-
izontal gene transfer in biology. Multiple standard algorithms exist for quickly
extracting a plausible tree from a distance matrix which does not consistently
represent a tree. These approaches differ in complexity, and in the criterion they
optimize.

The oldest and still frequently used distance matrix algorithm is UPGMA, first
defined by Sokal & Michener (1958) as an approach to hierarchical clustering.
UPGMA (Unweighted Pair Group Method with Arithmetic Mean) progressively
fuses clusters into larger phylogenetic units, starting with every node in its own
cluster. The algorithm maintains a table of current distances between all clusters.
At each step, the two clusters with the minimal distance are fused into a new
cluster, and a corresponding node is introduced to the phylogeny. The distance
between the new cluster and all existing clusters is defined as a weighted average
of the distances to the two clusters, with the weights defined by their relative
sizes. Branch lengths are simply defined by the distances among the clusters.
UPGMA works quite well on data for which a clock assumption holds, i.e. when
we can assume that the changeswhich increased the distance occurred at roughly
equal rates throughout the tree. Under this condition, the UPGMA tree provides
the optimal least-square fit between the branch lengths and the distance matrix.

If the length of tree branches is to be minimized wihout a clock assumption,
the most popular quick approach is the neighbor-joining algorithm by Saitou &
Nei (1987), which is not linked to a simple optimality criterion. Neighbor join-
ing maintains a measure of isolatedness 𝑢(𝑖) for each node 𝑖, derived from its
average distance to all other nodes. At each step, it connects the nodes 𝑖 and 𝑗
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which have the smallest 𝑑(𝑖, 𝑗) − 𝑢(𝑖) − 𝑢(𝑗), i.e. distance corrected for isolated-
ness. The distance of the new node 𝑖𝑗 to each existing node 𝑘 is then defined as
𝑑(𝑖𝑗, 𝑘) ∶= (𝑑(𝑖, 𝑘) + 𝑑(𝑗, 𝑘) − 𝑑(𝑖, 𝑗))/2. i.e. the average of the distances to each of
the two nodes, with a discount which increases as clusters become less closely
connected. This procedure maintains a good balance between internal consis-
tency of clusters, and quick inclusion of isolated nodes which are not particulary
close to any other cluster.

If character-encoded data is available, the most straightforward optimality cri-
terion is to build the tree which minimizes the number of assumed evolutionary
events. This leads to the maximum parsimony paradigm, where the primary de-
sign decision is how to count the evolutionary events the number of which we
want to minimize. The most straightforward definition is based on the minimal
number of character-state changes we have to assume to fit the data to a given
tree. Computing this number is typically done according to Sankoff (1975), a dy-
namic programming algorithm which reconstructs the optimal character states
at ancestral nodes as a byproduct. We will therefore take a look at the Sankoff
algorithm in detail when reconstructing the presence of cognate sets at proto-
languages in §6.8. Parsimony scores for any given tree can be computed very
efficiently, but the challenge remains how to traverse the tree space in order to
find a tree of maximum parsimony. The most advanced methods for doing that
are based on the branch & bound paradigm, where the entire search space is in-
dexed by a decision tree. For each of the alternatives at the current decision node,
lower and upper bounds for the still attainable parsimony scores are computed
given the decisions already made. If the lower bound of one alternative is higher
than the upper bound of the other, an entire (possibly huge) branch of the search
tree can be ignored in our search for the maximum. With a good decision tree
that maximizes the chances of large differences between alternatives, branch &
bound optimization can be quite efficient.

Gray & Jordan (2000) were the first to apply maximum-parsimony phyloge-
netic inference on substantial amounts of language data to answer an open ques-
tion of historical linguistics. Using maximum-parsimony trees over 77 languages
inferred from about 5,000 cognacy characters, Gray and Jordan compare two
competing theories about the Austronesian settlement of the Pacific. While the
resulting trees clearly suggest a rapid expansion from Taiwan into Polynesia,
they find that the overall signal does not fit the tree model extremely well, sug-
gesting substantial interaction between populations even after the initial settle-
ment. In contrast, Holden (2002) shows that the cognacy pattern for 92 con-
cepts across 73 Bantu languages fits a tree-like pattern rather well. The subgroup-
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ings with the highest support (i.e. which consistently appear across a range of
maximum-parsimony trees on subsets of the data) were found to closely mirror
the earliest farming traditions of sub-Saharan Africa, leading to the conclusion
that the modern subgroups have largely remained in place since they became
separated, without intensive contact or further large-scale migrations after the
initial expansion.

The most modern and most successful approaches to phylogenetic inference
are all probabilistic, i.e. they build on a model specifying the probability of gen-
erating the character-encoded dataset from any hypothesized tree. This requires
the generation of trees to be modeled explicitly by an evolutionary model, which
can e.g. include separate mutation rates for each branch. However we define our
evolutionary model, it will assign a probability 𝑝(𝐷|𝑇 ) to the dataset 𝐷 given any
tree hypothesis 𝑇 . Now, if our goal is to find the tree 𝑇 which maximizes 𝑝(𝐷|𝑇 ),
we do not actually need to normalize 𝑝(𝐷|𝑇 ) into a probability distribution by
considering all other datasets, but it is enough to have some functionwhich ranks
trees in the same way as 𝑝(𝐷|𝑇 ) on our fixed dataset 𝐷. A function 𝐿(𝑇 |𝐷) with
this property is called a likelihood function, and the resulting paradigm is there-
fore called maximum likelihood. As in the case of maximum parsimony, the chal-
lenge is to efficiently traverse the tree space in order to arrive at high likelihood
values. Typically, the topology will be modified first, and the branch lengths then
optimized given the topology. While naive optimization algorithms often work
surprisingly well, a lot of technical machinery is needed to efficiently come up
with good tree hypotheses on larger datasets. Felsenstein (2004: Ch. 16) is still
a good entry point into the ever-growing landscape of algorithms and heuristic
techniques trying to solve this challenge.

Further exploiting the advantages of fully probabilistic models, the state of
the art in phylogenetic inference relies on Bayesian methods. If we have prior
knowledge 𝑝(𝑇 ) about likely tree topologies, mutation rates and branch lengths
(e.g. due to historical constraints), we can do better than a simple maximum-
likelihood estimate by inverting 𝑝(𝐷|𝑇 ) using Bayes’ formula. This formula im-
plies that 𝑝(𝑇 |𝐷) is proportional to 𝑝(𝐷|𝑇 ) ⋅ 𝑝(𝑇 ), i.e. we can maximize the pos-
terior probability 𝑝(𝑇 |𝐷) of the tree hypothesis given our prior knowledge 𝑝(𝑇 )
about possible tree structures and rates of change. What is more, if we normalize
𝑝(𝑇 |𝐷) across all possible trees, we actually get an explicit posterior probability
distribution. This makes it possible to quantify our certainty about any given so-
lution, and we can sum over the probability mass assigned to entire classes of
trees in order to derive confidence windows in the tree space.
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The problem is that the normalization factor for 𝑝(𝑇 |𝐷) will typically not be
computable, because already the enumeration of all possible tree topologies be-
comes intractable very quickly. As soon as continuous branch lengths are in-
volved, the normalization factor becomes an integral that can only be estimated.
This is where the main challenge of implementing Bayesian methods lies, and
again I point the reader to Felsenstein (2004: Ch. 18) for an introduction and
overview. The crucial finding is that if we use specialized sampling techniques,
knowledge of the likelihood function suffices to sample trees from the poste-
rior distribution in a way that converges towards the true distribution. Based on
large numbers of samples generated in this way, all relevant properties of the
posterior distribution can be estimated just as well as if we had access to the full
distribution. Since many trees have to be generated and discarded to emulate
independent sampling, Bayesian methods are very demanding computationally,
and have only recently become feasible to run in acceptable runtimes due to the
advancement of computing technology.

All current probabilisticmodels only infer an unrooted tree, inwhich the branch
lengths are defined for the path between every pair of nodes, but the position of
the root in the tree remains unspecified. The reason for this is that the most
widespread models for 𝑝(𝑇 |𝐷) are agnostic to the position of the root in the tree,
implying that there is no mathematical criterion that can be used to decide be-
tween possible root positions. Therefore, after inference the root must be placed
in some position on some branch of the tree in a rooting step based on exter-
nal evidence. The simplest approach (and the only one which will feature in this
book) is to define one of the languages as an outlier, which will be assumed to
form a taxon separate from all other languages in the resulting rooted tree.

The application of Bayesian phylogenetic inference to linguistic data was pi-
oneered by Gray & Atkinson (2003), who derive a controversial very early date
estimate for Proto-Indo-European. As Bowern & Atkinson (2012) exemplify for
Pama-Nyungan, the largest Australian language family, Bayesian phylogenetic
inference is very useful for clarifying the higher-order structure of less well-
researched language families.

2.5.3 Phylogeographic inference

Within the Bayesian paradigm, it becomes possible to also include other elements
of language history into models, and then sample from the joint posterior distri-
bution to generate the most likely scenario. This is the framework within which
Bouckaert et al. (2012) modeled the expansion of Indo-European. They defined
a phylogeographic model which not only includes the tree topology and time
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depths for each split, but also assigns a geographical location to every language
at every point in time. As observations, the model was given the current geo-
graphical ranges of living Indo-European languages in addition to the cognacy
overlaps in basic vocabulary already used previously for time depth estimates.
The surprising result of their model is that the most likely ancestral homeland
of Indo-European is Anatolia, as opposed to the much more widely accepted
homeland in the Pontic steppes. This result is found to be stable under various
conditions, including the inclusion of cognate data for ancient languages.

A different approach is exemplified by Sicoli & Holton (2014). They attempt to
determine themost likely homeland of the recently substantiatedDené-Yeniseian
language family proposal, whichwould connect the Na-Dene languages of North-
west America to the Yeniseian languages of Central Siberia. Working on only 90
typological characters (lexical cognacy is hard to determine due to the high time
depth), they compare different tree constraints in a Bayesian phylogenetic tree
inference framework, and determine whether one topological constraint leads to
a much better fit to the data than others. Finding no support in favor of Yeniseian
splitting off before the diversification of Na-Dene, they conclude that the most
likely historical scenario is an ancestral homeland of the family in Beringia, from
where Na-Dene speakers migrated into North America in two separate waves,
whereas the Yenisean languages are a result of a back-migration from the same
area. This Out-of-Beringia dispersal is in conflict with previously dominating
views assuming that the Yenisean languages branched off during the migration
of Dene-Yenisean speakers from Central Asia into the American continent, but
fits together well with recent findings of population genetics.

Much more than the results of phylogenetic inference, this type of work is
faced with massive criticism by historical linguists, who remain skeptical about
the possibility of deciding such difficult questions by mathematical means based
on a very small number of datapoints. A major factor is that homeland questions
were previously found to be almost inanswerable even given all the available in-
formation about the position of ancient languages, grammar, the full lexicon, and
many historical facts. This skepticism is enhanced by the fact that the scenarios
computed as most likely by such methods naturally tend to deviate from securely
established facts in many details, suggesting that these methods might be too op-
timistic about the reconstructability of events which are essentially historical in
nature. Pereltsvaig & Lewis (2015) give a book-length reply to Bouckaert et al.’s
claim that the Indo-European homeland debate can be considered settled in fa-
vor of the Anatolian hypothesis due to their result. While their criticism against
phylogeographic methods might jump to conclusions a little too easily, the book
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can still be recommended to any reader who would like to understand why phy-
logeographic inference, and the way its results were advertised as resolving a
century-old question, was so badly received by historical linguists.

2.5.4 Automating the comparative method

Much closer to the heart of mainstream historical linguists, a small subtrend
within computational historical linguistics has consisted in attempts to automate
parts of the comparative method. Since each stage of themethod has its very own
heuristics and rules, the development of software tools for these purposes has be-
come a very specialized area where the usual paradigm of applying off-the-shelf
bioinformatics software does not lead very far. The decisive advantage of this
approach is that it yields results which can be interpreted and evaluated in the
trusted framework of historical linguistics. Soon, the field might lead to conve-
nient helper tools which take over much tedious routine work involved in the
comparative method, such as looking for possible cognates with non-identical
meaning, or mechanically checking whether a hypothesized sound law covers all
examples. Good overviews of the current state of the field are provided by Steiner
et al. (2011), who present a very ambitious full pipeline for computational histor-
ical linguistics which has apparently not been completely realized, and by List
(2014), a dissertation which describes the motivation and the design decisions be-
hind LingPy, the most advanced publicly available workbench for computational
historical linguistics.

2.5.4.1 Phonetic distance measures

From the computer’s perspective, phoneme sequences, whether encoded in a lan-
guage’s orthography or in a unified phonetic format, are initially just sequences
made of distinct symbols, none of which is inherently similar to any other. At
least as a prefilter for anything that follows, a program for automating the com-
parative method will need some capability to decide whether two phoneme se-
quences are broadly similar. In computational systems, this basic intuition is in-
variably modeled by some string distance measure. This can be as simple as the
number of shared bigrams (two-segment substrings), the longest common sub-
sequence, or just a binary distinction where strings are judged as similar if they
share the first letter, and as dissimilar otherwise. Kondrak (2005) systematically
evaluates how far one can get using some of these simple measures, and achieves
surprisingly good results on information retrieval and cognate detection tasks.

One of the most widely used non-trivial string distance measures is the Lev-
enshtein distance or edit distance, which counts the minimal number of elemen-
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tary editing operations (deletions, insertions, or replacements) needed to trans-
form the one string into the other. In its vanilla definition over an alphabet of
distinct symbols, this measure is very efficient to compute using dynamic pro-
gramming. The Levenshtein distance on either the orthography or some coarse-
grained sound-class model tends to lead to a workable first approximation to
phonetic form distance. Still, the fact that according to the Levenshtein distance,
gown is as far away from owl as from gun, might indicate that using the Leven-
shtein distance will lead to unsatisfactory results in many specific cases.

Typically, the solution is to estimate symbol similarity matrices, and count re-
placement of similar symbols by only a fraction of a full replacement when com-
puting the edit distance. For instance, when assessing the similarity of English
orthographic strings, changing an o to a u should be much better than changing
an l to an n. This natural extension to the Levenshtein distance leads to the al-
gorithm first presented by Needleman & Wunsch (1970), which maximizes the
similarity score between strings by introducing gaps, and filling a dynamic pro-
gramming table. Variants of the Needleman-Wunsch algorithm are still the pre-
ferredmethod for computing string distances in distance-based phylogenetics. In
gene sequence alignment, there are standardized and well-tested similarity ma-
trices which encode current knowledge about the different probabilities for each
nucleotide base to turn into a different one due to mutation. Unfortunately, no
such standard matrices exist for phonemes, due to the absence of a global inven-
tory of attested sound changes. In practice, this makes the estimation of a new
symbol distance matrix necessary for each dataset, and turns the process into a
bit of a dark art. Methods which estimate the distance matrix from large amounts
of data consistently fare better than attempts to manually encode the intuitions
of historical linguists into a matrix, due to the impossibility for a human to assign
an intuitive meaning to the distance weights.

2.5.4.2 Phoneme sequence alignment

Any method which uses dynamic programming to compute some minimal edit
distance implicitly constructs an alignment, i.e. a separation of the two or more
aligned strings into columns of equivalent segments. A binary alignment spec-
ifies which phonemes are cognate in a pair of cognate words. For automated
methods, the columns of each alignment provide sound correspondence candi-
dates, which can be counted and correlated to buildmodels of phoneme distances.
Binary alignments can also be joined into multiple alignments of entire cognate
sets in order to extract multi-way sound correspondences.

The optimal way to align phoneme sequences is still an active area of re-
search, and no single approach has so far materialized as being the best across
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datasets. Depending on the language family, the trivial alignment (of identical po-
sitions, without assuming any gaps) might work just as well as gappy alignments,
and whether vowels match might be almost irrelevant (in Semitic) or crucial (in
Uralic).

As part of the data preprocessing, a variant of my previously published binary
alignment method called Information-Weighted Sequence Alignment (IWSA) is
introduced in §4.3. The information weighting uses language-specific trigram
models to weight the phonemes by relevance, assigning a higher penalty to mis-
matching segments in high-information phonemes. This helps to detect partial
cognacy, and avoids some of the skew introduced when comparing dictionary
forms e.g. due to shared infinitive endings.

2.5.4.3 Sound correspondence models

In the same ways that global sound distance matrices are estimated, it is pos-
sible to infer sound distances for any pair of languages. These will tend to as-
sign low costs to sound pairs which are equivalent across many alignments, and
can therefore be interpreted as encoding some of the sound correspondences the
comparative method operates with. For instance, given enough examples such
as water/Wasser, street/Straße, and foot/Fuß, the alignment costs of English [t]
and German [s] will be rather low, encoding the consequence of a part of the
High German consonant shift. Since programs for inferring and modeling sound
correspondences are part of the toolchain I am using for the evaluation, existing
methods for performing this task are covered in §4.4.

2.5.4.4 Cognate and loanword detection

In principle, it would be possible to use inferred sound correspondences in a
symbolic way, and to implement the logical criteria as they are applied in his-
torical linguistics to separate cognates from loanwords. The problem with this
approach is that it requires very clean decisions on the valid sound correspon-
dences, so that word pairs which violate some of these correspondences could be
sifted out as loans. Also, the computational models of sound correspondences are
not sufficiently fine-grained to model contexts in ways that are explicit enough
to represent sound correspondences as exceptionless.

Another huge problem for better models is data sparseness. Even in classical
historical linguistics, where detail questions can often be resolved by means of
many other sources of knowledge such as early attestations or historical and
cultural knowledge, sound correspondences betweenmore distant languages can
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often barely be established, even if the entire lexicons of two languages are taken
as raw material for possible cognate pairs.

These reasons make it unfeasible in principle to apply these criteria to lexico-
statistical databases, even the largest of which will only cover a portion of the
relevant basic vocabulary. Current systems therefore remain in the probabilis-
tic framework, typically applying some clustering algorithm to the distances of
language-specific realizations in order to group them into cognate classes. Since
an automated cognate detection module again forms a major part of the work
presented in this book, an overview of possible approaches to this task is given
in §4.5.

2.5.4.5 Automated reconstruction

To have a computer prove language relationship according to the standards of
historical linguistics, we would need software which reconstructs the unattested
common ancestor language of the claimed genetic unit, and demonstrates how
the attested forms can be derived from them as the result of a series of sound laws.
This is the taskwhich the earliest work in computational historical linguistics has
attempted to automatize, and having tools for reliably inferring ancestral strings
remains a highly attractive goal. If an automated tool successfully reconstructed
a language attested in ancient texts, or a proto-language which all experts in
the respective language family find convincing, based on its modern descendant
languages, this would be a very convincing argument in favor of computational
methods.

Given the centrality of reconstruction to the comparative method, it is surpris-
ing how little work has been done in the area. What makes the task very diffi-
cult is the conditional nature of sound changes, and that it is difficult to model
which sound changes are plausible and which are not. Moreover, the combinato-
rial problems involved in determining in which order sound changes applied, do
not disappear when attempting to automate the task. Rule-based systems such
as the ones presented by Hewson (1974) and Oakes (2000) tried to stick as closely
as possible to the way in which sound laws are tested in historical linguistics.
These approaches ran into the problem that for reconstruction tasks involving
more than a handful of languages, there will frequently be no consistent solution,
because some language will invariably display some changes which cannot be
captured by the system’s logic. There will always be some exceptional behavior
like analogy modifying some words, which a historical linguist will be aware of
and can decide to make part of the explanation, but which an automated method
will not detect.
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Like for the other tasks, progress towards workable systems has only been
possible by modeling the problem probabilistically. As the endpoint of a series
of papers working towards such a model, Bouchard-Côté et al. (2013) present
a fully Bayesian framework for reconstructing ancestral wordforms, and evalu-
ate it on the ABVD database. In their eyes, an average normalized Levenshtein
distance of 0.125 per wordform (i.e. getting about seven out of eight phonemes
right) between the automated reconstruction and expert reconstructions of Proto-
Austronesian is a great success. The model they are describing is certainly much
more linguistically informed than an earlier Bayesian model by Ellison (2007),
and a separate evaluation on the Oceanic subgroup shows that the system’s re-
constructions differ only twice as much from two expert reconstructions than
these differ among each other. However, given that Austronesian is widely con-
sidered one of the easier cases for reconstruction due to a very simple phonology,
and that a wrongly reconstructed vowel in a single word is sometimes problem-
atic enough in classical historical linguistics to make or break an entire theory,
the state of the art in automated reconstruction is still very far from a convinc-
ing implementation of the last step of the comparative method. By and large,
automated reconstruction can still be considered an open problem.

2.5.5 On the road towards network models

The context of the approach I am exploring in this book takes us back to the
phylogenetic inference problem. The crucial last step is that instead of treating
conflicting signals in distance or character data as mere noise that makes it more
difficult to infer the true tree, it is also possible to see some of the conflicting
signal as caused by legitimate secondary connections. To get access to these con-
nections, an obvious idea is to expand the tree model in order to explicitly repre-
sent relevant lateral signals. The idea of adding additional reticulation edges to
a tree in order to do so, leads to the concept of a phylogenetic network. Huson
& Bryant (2006) give an overview of the most common types of phylogenetic
networks, also performing a much-needed clarification of terminology which
resolves some of the conceptual confusion plaguing this area. A slower-paced
introduction to the topic is the more recent book by Morrison (2011), which also
serves as mymain source for the following overview of the most important types
of networks.

The notion of a phylogenetic network actually subsumes two very different
types of networks which have not always been kept separate due to the use of
a single vague term. Morrison advocates the usage of the term data-display net-
work for undirected networks which simply visualize the conflicting signal in
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phylogenetic tree inference by means of additional virtual nodes and undirected
edges which represent multiple alternative subgroupings. In contrast, the term
evolutionary network is reserved for types of directed acyclic graphs that are true
generalizations of directed rooted trees, where reconstructions of lateral signals
(such as lexical admixtures) are represented explicitly by directed secondary ar-
rows connecting nodes in the tree.

2.5.5.1 Data-display networks

Most popular types of data-display networks can be subsumed under the term
of a splits graph. The defining property of a splits graph is that each edge repre-
sents a bipartition of the leaves according to some criterion. Intuitively, edges
therefore visualize separability between clusters of nodes. An incompatible pair
of bipartitions defines a reticulation, which is visualized by copying both edges,
and drawing them into a parallelogram. Drawing these parallelograms will in-
troduce some additional nodes which do not reflect any reconstructed common
ancestor, which means that edges cannot be interpreted as representing actual
evolutionary events. If there is too much conflicting information, or the data are
insufficient to decide on a binary structure, some nodes will be unresolved and
visualized as polychotomies (more than binary branching). Split graphs make it
easy to get a first impression of the amount and location of conflicting signal
for the phylogenetic tree inference task, but do not lend themselves well to any
purpose beyond exploratory data analysis.

Many algorithms for computing splits graphs from various types of data have
been proposed in the literature, which differ in the number of conflicting splits
that will be visualized at the same time, and in the way possible splits are defined.
I will only mention the two most popular types here, and refer to Morrison (2011:
Section 3.3.1) for more variants.

For data that comes in the shape of binary characters, the prototypical type of
data-display network is the median network. In the most basic variant, every pair
of conflicting splits leads to a duplication of the edges crossing that split, which
can lead to exponentially many virtual nodes, and a very high-dimensional struc-
ture that is difficult to visualize. Various modifications have been developed with
the goal of systematically excluding some less well-attested splits from the visu-
alization. The most commonly used variant, the reduced median network, isolates
the highly conflicting characters in a preprocessing step, and generates more
compatible replacement data as the basis for the median network computation.

Among the network types which can be extracted from distance data, the most
popular type of splits graph is called a neighbor-net. The process for building a
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neighbor-net is similar to tree construction by neighbor joining. Going through
pairwise distance scores from the shortest distance to the largest, a pair of nodes
is linked at each step, and represented by the subsequent steps as a single virtual
node whose distance to the other nodes is computed as the average of the indi-
vidual distances. Unlike in neighbor-joining, each linked node remains eligible
for additional linking until it is linked a second time to a different node. This pro-
cedure makes a planar representation possible, however complex the conflicting
signal may be. Always selecting the closest pair of unlinked nodes ensures that
the strongest conflicts are the ones that get visualized. While neighbor-nets are
becoming the most popular type of data display networks due to their readability,
one must be aware of the fact that some reticulations might not be supported by
actual conflicts in character data, but result from the information loss incurred
while summarizing the data in the form of a distance matrix. In contrast, reticu-
lations in a median network always reflect conflicting information from at least
one pair of characters.

The second group of data-display networks apart from splits graphs are parsi-
mony networks , where each edges represent a link in somemaximum-parsimony
tree, and the edge length is directly interpretable as the number of character
changes according to the maximum parsimony criterion. Parsimony networks
are constructed from collections of maximum-parsimony trees, which makes
them very costly to compute for larger datasets, and very prone to inaccura-
cies in the data. This makes them less adequate for often quite noisy linguistic
data, and I am only mentioning them here to indicate that types of data-display
networks other than splits networks exist. For an overview of different parsi-
mony network inference methods, and pointers to the relevant literature, the
reader is referred to Morrison (2011: Section 3.3.1). Morrison also discusses other
types of data-display networks which aggregate trees generated from different
parts of the data, and are not generated directly from entire character-encoded
or distance-matrix data sets.

2.5.5.2 Evolutionary networks

In contrast to data-display networks, internal nodes in evolutionary networks
actually correspond to inferred ancestor species, and lateral connections in a
good network should correspond to actual instances of lateral contact. These
networks obviously contain much more specific information than data-display
networks, and inferring them is a very worthwhile, but much more difficult task.
Many ways of inferring such networks have been proposed in the literature, but
according to Morrison (2011), most algorithms are not performant enough to be
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applied to interesting datasets, and not a single one exists in a readily usable
implementation that could make it a standard tool in bioinformatics. What is
more, existing methods have tended to make unrealistic simplifying assumptions
in order to keep algorithms tractable, without much emphasis on asking whether
the assumptions reflect properties of the respective problem.

Existing methods have generally prioritized computability by restricting the
search space to classes of evolutionary networkswith some additional constraints.
One obvious idea is to limit the number of reticulations in the network, for exam-
ple by allowing a maximum number of horizontal connections in the entire tree.
This makes very fast inference possible, but is of limited use because it introduces
knowledge of the same type which one would actually hope to retrieve from a
network. Less ad-hoc constraints involve the notion of a reticulation cycle, which
is defined as a configuration of two separate directed paths which start in a sin-
gle node and meet again in another node. An instance of this would consist of
directed paths from Proto-Germanic into Old Norse, from Proto-Germanic into
West Germanic, from West Germanic into English (all due to inheritance), and a
directed arc from Old Norse into English (via horizontal transfer).

To put a bound on the amount of reticulation, a very basic approach is to
prevent any nodes from being shared between cycles. Among other things, this
implies that every node can only be involved in a single horizontal transfer event.
This rather strong constraint defines galled trees, which have much nicer mathe-
matical properties than general evolutionary networks, and inference of which
is tractable for substantial numbers of nodes. However, this condition makes
galled trees inadequate for our linguistic application, as they cannot model e.g.
the transfer of English loanwords into both German and Hindi.

Slightly more generally, galled networks allow reticulation cycles to share retic-
ulation nodes, i.e. allow one node to serve as a source of horizontal information
flow into more than two other nodes, but still prevent any overlap in other nodes.
Even though it is weaker, this constraint still implies that each node can only re-
ceive information flow from at most two nodes, i.e. from its ancestor and one
additional node. Thus, a galled network cannot model facts such as that English
received loanwords from both Norman French and Old Norse.

Willems et al. (2014) describe an algorithm for inferring the slightly more gen-
eral class of hybridization networks from a distance matrix according to a gen-
eralization of the Neighbor-Joining principle. The method detects some nodes in
the neighbor-joining tree as containing conflicting affiliations, and allows each
such conflict node to be modeled as a hybrid of two contributors of lexical mate-
rial, either by horizontal transfer or inheritance. In the case where two sources of
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horizontal transfer are inferred (true hybridization), one of them can receive an
alternative interpretation as the influence of a close common ancestor, leading to
a maximum of three incoming connections being visualized. The possibility for
leaves to become source languages moves the generality of representable evolu-
tionary histories only slightly beyond the level of galled trees. The advantage is
that the models yields a quantitative estimate of the contribution by each of the
two source taxa for each hybrid, and can designate one of the two sources as the
likely ancestor, and the other as the contributor of a lateral signal.

2.5.5.3 Network models in historical linguistics

Unlike phylogenetic trees, phylogenetic networks have only started to be applied
to linguistic data. Most existing work is based on data-display networks, which
are mainly used to visualize the places in language trees where conflicting phylo-
genetic signals exist, and typically interpreting these as representing dialect con-
tinua as opposed to tree-like dispersal. A case in point is Lehtinen et al. (2014),
who compute splits trees over the UraLex database, and interpret the results as
showing dialect continua within the westernmost branches of Uralic.

List et al. (2014) have some success in inferring minimal lateral networks from
cognacy data. Minimal lateral networks are a less mainstream type of recombi-
nation network where all lateral connections are implictly assumed to have their
endpoints in living languages, whereas the startpoints can be any internal node
in a guide tree.This makes the computational problem a lot easier, and highlights
the parts of the tree among which there is a strong lateral signal, but the results
cannot be interpreted directly as encoding contact events.

Recently, Willems et al. (2016) compared how splits graph, galled network,
and their own hybridization network algorithms perform on a single set of cog-
nacy data. They argue that the network models successfully identify donors and
recipients of lexical material, and make it possible to quantify the degree of in-
fluence between languages. Unfortunately, their only evaluation is on a heavily
modified version of the IELex database, albeit with a lot of interesting detail. Dis-
cussing and comparing the results of the three algorithms on several genera, the
hybridization networks consistently delivered a clearer picture, often deciding
correctly which of the two sources contributed the horizontal signal, and fewer
erroneous hybrids than the galled network.This differencemight be due to an un-
fair comparison, because the galled networks frequently represented a language
to be a mixture of more than two languages, which is not surprising given their
higher generality. On larger datasets from other linguistic regions, contributions
frommore than two source languagesmight actually be desirable. Unsurprisingly

44



2.6 The lexical flow inference task

given their status as mere data display networks, the splits networks turned out
to be barely interpretable, as they included far too many lateral connections.

2.6 The lexical flow inference task

In this section, I wrap up my overview of existing models in computational his-
torical linguistics by defining the two tasks I am attempting to solve in this book,
and putting them into the context of the overall methodological landscape. The
first task, phylogenetic lexical flow inference, can be conceived as fully general
evolutionary network inference without branch lengths. The second task, con-
tact flow inference, focuses on determining historical contacts between attested
languages, and only treats proto-languages as hidden common causes for subsets
of the observed languages.

2.6.1 Phylogenetic lexical flow

Every rooted phylogenetic network can be analyzed as containing a tree topol-
ogy and additional lateral connections cross-cutting the tree structure, which
cause some nodes to have multiple incoming arrows. If we assume that major
lexical influences will typically be monodirectional (as justified by my overview
of current knowledge about language contact), assigning a direction to each lat-
eral connection, as is the case in a directed acyclic graph, is an obvious modeling
decision. Moreover, as we have seen in the discussion of existing phylogenetic
network methods, it is desirable for a network to support any number of incom-
ing and outgoing edges for leaves as well as ancestral nodes, making it possible
to represent the very complex evolutionary scenarios which actually occurred in
the history of human language.

Quite naturally, this leads to the task of inferring a completely unconstrained
directed acylic graph (DAG) over the attested languages of a region, and their
reconstructed ancestors according to some inferred tree.The phylogenetic lexical
flow inference task which I am trying to solve is thus a lot more challenging than
any type of evolutionary network that has so far been inferred over a moderately
large number of languages. I hope to show that causal inference at least provides
a starting point for addressing this task.

2.6.2 Contact flow

In order to make the problem a little simpler for possible inference algorithms,
and not to build too much on unreliable estimates of cognate set presence in an-
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cestral languages, we can confine ourselves to just inferring which languages are
related by inheritance, and just inferring a model of lexical flow among the ob-
served languages.This is mirrored in some sense by the way in which the history
of languages is commonly described. For instance, if we want to summarize the
history of the English lexicon in a few sentences, we would typically not refer
to previous stages of the languages involved, speaking of Norman French influ-
ences on Old English. Instead, the much more common way of expressing this
is to simply talk about French influence on English, although the actual process
happened between ancestors of the two languages, which are quite arbitrarily
called older versions of the modern national languages, as if Latin were called
Old Italian.

In this vein, we would expect an automated method which analyses the ba-
sic lexicon of modern European languages to infer a relation pair fra → eng,
i.e. largely monodirectional influence of French on English. Similar well-known
pairs in Europe would include swe → fin (Swedish influence on Finnish) and
deu → lav (German influence on Latvian).

So how can we define a correct and complete contact flow network among
a set of living languages, in which the earlier stages at which the relevant con-
tacts actually occurred are not explicitly represented? One possibility is to de-
fine the contact flow network in such a way that a flow involving at least one
proto-language can be represented as the corresponding flow involving any of
the descendant languages. For instance, Slavic influence on Romanian might be
represented by bul → ron (Bulgarian on Romanian), by hrv → ron (Croatian on
Romanian), or both. Given the quantity of Slavic loans even in the basic vocabu-
lary of Romanian, we might also want to consider as an error the absence of any
such incoming arrow from a Slavic language. In contrast, if a pair of languages
shares lexical material only due to common ancestry, this may be represented by
a second type of edge, which will be representing by undirected arrows in my
contact flow visualizations.

2.7 The adequacy of models of language history

After the short overview of computational models of language history and the
place of my own models in this landscape, a good way to conclude the chapter
might be to reconsider the relation of these models with linguistic reality from a
more distant point of view.

In some respect, every computational model is necessarily at odds with the
ways in which language change is known to occur in reality, even if we only
concern ourselves with the contents of their lexica. All the models I described
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quite literally assume that languages are “bags of words” to which new words
get added, and from which other words are removed, as the language transitions
across its different historical stages. Even if we buy into this model, and are ready
to abstract over the fact that the disappearance of a word will never be a sudden
event, but an abstraction over a process of declining usage, we are faced with
an additional need for abstraction when mapping the history of a language. The
quite common separation into discrete stages such as Old High German or Mid-
dle English already constitutes a very far-reaching and unnatural simplification
given that the changes between the variants have obviously not all occurred at
the same time. Some of the more advanced methods do yield probability distribu-
tions over reconstructed states at arbitrary points of time, but these distributions
often only reveal just how uncertain we are about the exact order in which words
appeared in or disappeared from an attested language. Computationally more
tractable methods will tend to restrict themselves to inferring a limited number
of intermediate historical states, most commonly the stages just before each split
occurred in a tree model.

Even in the rare case where we can rely on written sources to get a glimpse of
a historical variety, deciding whether some word existed in the language at the
given point in time can be a difficult question. An attested occurrence of a word
does not necessarily mean that it had currency within the language at the time
of writing, it might well be that a it was merely used to evoke an impression of
ancientness, or even only for humorous effect (e.g. when a Shakespearean phrase
like ‘methinks’ is used in contemporary English). On the other hand, a word that
is missing might simply not be attested due the small corpus size, and we should
not infer anything from its absence. For instance, the Hittites quite plausibly had
a word for ‘to sneeze’, even if none of their surviving texts might use it.

Ultimately, already the concept of a language is an abstraction over the man-
ifold variants and subsets actually represented in the brains of and used by its
speakers. For professional reasons, my personal variant of German includes quite
a few English words that should very likely not be considered loanwords in ‘Ger-
man’, although in my personal variant, they certainly are. It is important to keep
in mind that reducing the languages involved to discrete and uniform units in or-
der tomodel the connections between them in terms of a discrete graph structure,
be it a phylogenetic tree or a more general structure like a lexical flow network,
amounts to a significant leap of abstraction.

While these abstractions over speaker variation as well as geographical and
temporal variants might be seen as illegitimate simplifications by some, it is im-
portant to bear in mind that classical historical linguistics routinely builds on
very similar abstractions. Generalizing over dialects in order to focus on the
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deeper questions of ancestry is an obvious choice given the field’s primary in-
terest, but even temporal developments occurring across centuries are typically
only discussed if necessary for an argument. A typical etymological dictionary of
a European language will describe most Latin elements in the dictionary just as
borrowings from “Latin” instead of differentiating between Medieval and Clas-
sical Latin, and only mention that the source was Medieval Latin if the word in
question is not attested in Latin texts from classical antiquity. In many cases, the
other words were technically borrowed from Medieval Latin as well, but this is
not specified if the word already existed in the classical language. Therefore, the
fiction of uniform languages that can be treated as elementary units does not
only form the basis of computational models, but has always been one of the
central abstractions of historical linguistics.

The situation is quite different in dialectology and philology, where the dif-
ferences between the variants used in different places or by different authors
tends to be the focus of interest. Especially in dialectology, wave models have
always been much more popular than in historical linguistics, because on the
microlevel, the wave-like nature of spreading innovations becomes much more
clearly visible. In the timeframe of historical linguistics, thousands of years after
a change, when only one of the dialects might be attested, or a reconstruction of a
single proto-language abstracts over dialectal differences, the result of a complex
pattern of shared or isolated innovations will tend to look like a split, giving cred-
ibility to the tree metaphor. But even here, phylogenetic tree inference is quite
commonly faced with the problem that the phylogenetic signal becomes less tree-
like if the language sample includes dialects which were recently in contact, and
in quite many language families, the difficulty in deciding which daughter lan-
guage split off first may be due to the fact that the changes distinguishing the
subfamilies were wave-like.

While some level of abstraction is necessary to see the major trends, models
differ in their foci on different aspects of linguistic reality that they are primar-
ily interested in. In phylogenetic inference, lateral transmission due to language
contact is still mostly seen as disturbing noise that makes it more difficult to in-
fer reliable trees. I would argue that models such as lexical flow models in which
contact is not seen as irrelevant noise, but as a complementary force shaping
language history that holds interest in its own right, as has been the perspective
of classical historical linguistics, are inherently more interesting than even the
most advanced tree models.

Phylogenetic flow networks and contact flow networks differ in the impor-
tance they assign to the idea of common inheritance. While a phylogenetic flow
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network can explicitly model inheritance and borrowing, i.e. both of the primary
forces shaping the lexicon, a contact flow network is much more similar in spirit
to a wave model. Given what we know about the strengths and weaknesses of
tree and wave models, if a contact flow model fits a dataset particulary well, we
are very likely dealing with a set of neighboring languages through which inno-
vations have tended to spread in waves. On the other hand, a phylogenetic flow
model that only adds some directed lateral connections to a tree model will be a
better fit for data covering a set of languages which became differentiated due to
geographic separation, with only sporadic interaction at some points in history.

Finally, while I have tried to argue in this chapter that we can expect most
instances of language contact to have a strong directional component, I should
not conclude without acknowledging that this is another simplifying assump-
tion which might be difficult to defend in some situations. Especially when we
collapse the contacts which have happened during different historical stages, like
in a contact flow network, it will sometimes have been the case that the main di-
rection of borrowing between a pair of languages has shifted. An actual example
of this would be the interaction between French and Dutch. French is differen-
tiated from other Romance languages by a layer of Frankish loanwords which
entered the language during the Old French period. In a contact flow network
over living languages, where Dutch is likely to be the closest living relative of
Frankish, this implies that wewouldwant to infer an arrow fromDutch to French.
But of course, much later Dutch then borrowed a substantial amount of cultural
vocabulary from French, which should be reflected by an arrow in the opposite
direction. Since we do not distinguish between historical stages in a contact flow
network, this would be equivalent to connecting both languages by a bidirec-
tional arrow.

Even if as in this book, we build on a framework that is able to infer such
bidirectional links, it seems quite reductionist to be content with this summary
when the true story is much more complex and interesting. Still, such a lexi-
cal flow model would arguably model the linguistic reality much better than a
phylogenetic tree where both languages should be inferred to belong to differ-
ent branches, and their lateral interaction will typically only lead to uncertainty
about the internal structure of both branches. Tree models and network models
occupy different positions in the trade-off between model adequacy and ease of
inference, and as we are going to see in this book, striving for more adequacy
inevitably comes at a cost to computational efficiency and reliability of results.
Adding more detail, and coming even closer to inferring a realistic model of lan-
guage history, will lead to even more challenging inference problems.
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In this chapter, I give a concise introduction to the basic notions and methods
of causal inference. Since this branch of statistics is quickly growing into a large
field, the discussion is focused on leading the reader towards an understanding of
the theory behind the methods I am developing. This implies that the exposition
will only consider methods which are applicable to discrete data, and disregard
the many methods which are being developed and improved for continuous ob-
servations.

3.1 Philosophical and theoretical foundations

This section starts with a look at the very basic intuitions and established princi-
ples of the field. After some general considerations about the well-known issues
in linking correlation to causation, wemotivate the need for causal thinking even
in the absence of experiments, and turn to the central idea of using nature as an
experimenter.

I then introduce the crucial notion of conditional independence between vari-
ables, which roughly amounts to a criterion for deciding whether the connection
between two variables can be explained away by considering the possibility of
mediating other variables. For instance, there probably is a measurable correla-
tion between the occurrence of hats and trousers as pieces on the clothing of
humans, which might disappear when we condition on gender. The gender of
the body suffices to predict how likely we are able to find a hat or trousers on it,
and there is no direct connection in the sense that putting a hat on one’s head
would cause one to also put on trousers, or the other way around.

Sets of conditional independence statements over a set of variables identify a
graphical model over these variables, which is a decomposition of the joint dis-
tribution into factors given by a neighborhood relation in a graph. I will present
somemathematical notionswhichwere developed tomake this relationshipmore
precise, allowing us to exploit it for inferring graphical models from data.

Crucially, the Bayesian networks we can infer from data can be given a causal
interpretation. If we see such a structure not as a compact way to model and a
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convenient handle for calculating a joint distribution, but as representing the ac-
tual information flow between the variables, we can interpret each directed edge
in a graphical model as expressing a causal influence from the starting variable to
the variable the edge goes into. Based on this initial idea, one can build an entire
theory of intervention, allowing us to predict what would happen if one of the
variables was given a certain fixed value by manipulation, as in an experiment.
Pearl (2009) summarizes a wealth of previous work in this direction.

In this book, the emphasis is not on the philosophical issues about causality
which the intervention calculus touches upon, but on exploring the idea of defin-
ing causal graphs over languages, and interpreting the directed arcs as indicating
how languages influenced each other. In this section, we start with some general
considerations about causality, and the way complex probability distributions
are represented by directed graphs in the Bayesian network paradigm. I then
introduce the central idea behind causal inference, i.e. giving a causal interpre-
tation to the efficient representations generated by Bayesian network inference.
The mathematical details are then the subject of the next section.

3.1.1 Correlation and causation

There are three major reasons why the common warning that correlation is not
causation is true. The first is that correlation does not tell us the direction of
causality. Secondly and even more importantly, for any observed correlation of
two variables it is always possible (even likely) that there is a hidden common
cause or confounder which influences both variables. In this case, the correlation
is not due to a true causal connection which would link the two variables directly,
but due to confounding bias. The third problem is selection bias, a second type
of bias which can cause non-causal correlations, and can occur whenever two
observed variables have an influence on the sampling process. Selection bias is
a very difficult problem for clinical studies, because participation in the study
frequently depends on both the strength of symptoms and the availability of
treatment, which can create a spurious impression for some treatment to have
an effect on the symptoms.

To illustrate the general applicability of the causal inference framework, I will
work with two running examples throughout this chapter. For our more clas-
sical example with actual statistical variables, take the variable 𝑅 to mean the
average room temperature during the winter months, which we can measure
in any household of an entire country. Let 𝑂 be the average outside tempera-
ture in the respective city during the same timeframe, 𝐻 the heating costs per
square meter for the household, and 𝐼 some measure of the household income. In
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a wealthy welfare state where virtually everyone can afford as much heating as
they want, I would assume the average room temperature 𝑅 to only be based on
personal preferences 𝑃 , and hence independent of both the outside temperature
𝑂 and household income 𝐼 . Since people will try to maintain their desired room
temperature 𝑅 by influencing 𝐻 , there will obviously be a negative correlation
between 𝐻 and 𝑂. On some level, this does mean that lower outside tempera-
tures cause heating costs to increase, but this is only the case because people are
trying to keep 𝑅 constant, i.e. the causality is mediated by the room temperature,
on which both the amount of heating and the outside temperature have a causal
effect.

To give an example of selection bias, assume a politician wanted to argue for a
policy that prevents poor people from spending too much money on heating. In
anonymized data provided by a consumer counseling service, there does indeed
turn out be a strong correlation between 𝐼 and 𝐻 , seemingly supporting the pol-
icy. The problem is that this is very likely a spurious correlation due to selection
bias, because low-income households with high heating costs (e.g. due to high 𝑃 )
are much more likely to get counseling, and thereby becoming part of the study,
than other households.

In lexical flow inference, I will model language varieties as variables which in-
fluence each other’s lexica.The second running example in this chapter serves to
establish and illustrate this view, taking the first steps to an abstract understand-
ing of the approach before we turn to the data needed for an implementation
in Chapter 4, and the actual mathematical details in Chapter 6. I will often be
deliberately vague in this chapter when I write about computing the correlation
between languages, or explaining the dependence between two languages based
on a third one, in order to demonstrate how general the reasoning patterns are,
and that they would apply to many ways of modeling language varieties as math-
ematical objects. The algorithms in Chapters 6 and 7 will be based on one par-
ticular way of fleshing out these reasoning patterns in terms of shared cognates,
but the general reasoning patterns could just as well be applied to typological
variables, measures on parallel texts, and many other mathematical models of
language.

Generally, if we have some measure of determining whether two languages
are related or not, we can frame this relation in terms of independence. For in-
stance, the languages Japanese (jpn) and Icelandic (isl) are commonly assumed to
not be demonstrably related, and should therefore be independent according to
any reasonable measure. On the other hand, the languages Danish (dan) and Ger-
man (deu) are related, and should therefore come out as dependent. Danish and
German do, in fact, have a hidden common cause, namely their latest common
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ancestor Proto-Germanic (PGer). In addition, Danish includes many loanwords
from German, which a good model would detect as additional correlation in ad-
dition to the amount of correlation caused by the common proto-language, and
ideally, it would make it possible to determine German as the source of borrow-
ing. We would thus frame the Danish lexicon as being “caused” by the words of
Proto-Germanic and German.

With this general idea in place, let us stop and consider the question to what
extent we can say that the lexicon of a language is caused by the lexicon of its
immediate ancestor, as well as the lexica of any donor languages. To get a more
concrete picture of the actual process underlying this way of thinking, we need
to move down to the level at which the process which perpetuates a language
actually operates. This process boils down to the acquisition of a language by
single speakers, which can effectively stretch across throughout much of their
lifetimes. When a child acquires words, the languages of the parents or other
close relatives will likely be the source of these words. During later develop-
ment, speakers might be exposed to additional languages (such as a dominant
state language) at school, at the workplace, or while traveling, which adds addi-
tional speakers to the list of causes for their lexicon. But even within the same
language community, speakers will continually acquire new words which they
hear from other humans that they are in contact with. On the most elementary
level, the language of an individual speaker can thus with some justification be
said to be caused by the languages of other speakers. The causal metaphors be-
comes more problematic if we lift it to the level of entire languages, summarizing
thousands or millions of individual speaker histories to the level where we speak
of Proto-Germanic causing German, even if not directly. It would even be wrong
to say that the language of one generation is the main cause of the language of
the next, because on the level of a population, a generation is just as artificial a
category as the language stages I mentioned at the end of the previous chapter.
Still, with the disconnect between our abstraction and the actual process in mind,
conceiving of languages as being caused by their ancestors as well as additional
donor languages will turn out to be a very fruitful metaphor.

3.1.2 Causality without experiment

At least since Fisher ([1925] 1934), one of the foundational works of modern statis-
tics, the mainstream view on causality has been that it can only be determined
by experiment, i.e. by manipulating one of the variables while observing the ef-
fect on the others. When analyzing observational data without the possibility of
manipulation, the principle has been to avoid thinking in causal terms, because
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there was no way of giving a causal interpretation to observed correlations. This
inability and prudent refusal to talk about causality has left classical statistics
in a rather problematic situation. Most applied statistics is arguably motivated
by causal thinking, because a prime motivation of research is to find out why
things happen. For this reason, results obtained from observational data will in-
variably be given causal interpretations, as questionable as that may be from the
statistical point of view.

A very promising and comparatively recent approach to alleviating this ten-
sion has arisen in the field of causal inference, where causal notions receive a
systematic and consistent treatment with the help of graph theory. From the
perspective of inference, the core idea is to see nature as an experimenter, in
the sense that the random fluctuations in various variables are comparable to
manipulations in experiments, even though they are not performed by humans,
and certainly not under controlled conditions. For this reason, even more careful
thinking is required to avoid the pitfalls which even controlled experiments suf-
fer from. We must ensure that all the possibly relevant variables are taken into
consideration, so that there are no confounders leading us to the wrong conclu-
sions. Moreover, this view requires us to put belief into the common cause princi-
ple (CCP), most often attributed to Reichenbach (1956: Ch. 19), where the original
formulation reads as follows: “If an improbable coincidence has occurred, there
must exist a common cause”. In statistical terms, this principle implies that vari-
ables are typically not correlated by chance. Any significant correlation between
two variables must be due either to a direct causal relationship (in whichever
direction), or, if they are measured simultaneously, a common cause.

In our heating costs scenario, I would expect to see a correlation between 𝐼 and
𝐻 , indicating that more wealthy households will have higher heating costs per
square meter. It does not make sense to posit either that 𝐼 causes 𝐻 (a low wage
makes it easier to keep each square meter of your house warm), or that 𝐻 causes
𝐼 (higher heating costs increase your wage), so according to the CCP there must
be a common cause influencing both 𝐼 and𝐻 . After some research, we might find
that rich people have a tendency to afford larger windows, which decreases their
building’s heat insulation and makes it more expensive to maintain the desired
room temperature. We might therefore include the confounder into our model,
as a variable 𝑊 measuring the window expanse per square meter. If we have no
way of measuring this variable, it becomes a hidden confounder that we need to
take care of.

For the language scenario, the CCP applies as well, because we would also
expect any similarity between languages to be explainable either by chance (in
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case the correlation is not significant, for example), by a direct causal relationship
(i.e. borrowing), or by a common cause (e.g., a common proto-language, or a
common source language for shared loans).The case of an additional confounder
that needs to be included into our theory may occur in the case of a common
substrate layer.

3.1.3 Conditional independence

Two statistical variables 𝑋 and 𝑌 are said to be independent, which we write
as (𝑋 ⟂⟂ 𝑌), iff 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) for all values 𝑥 of 𝑋 and 𝑦 of 𝑌 . Intuitively,
independence means that we do not know any more about the value of 𝑌 if given
the value of 𝑋 , and vice versa.

In our example scenario, we assumed the room temperature 𝑅 to be indepen-
dent of the household income 𝐼 . The definition implies that if we know the dis-
tribution of room temperatures and the distribution of household incomes, we
can predict the joint probability 𝑝(𝑅, 𝐼 ) for any given values of 𝑅 and 𝐼 . Knowing
the average room temperature does not allow us to make a more educated guess
about whether we are dealing with a high-income household, and vice versa. In
contrast, we said that the outside temperature and the heating costs are not inde-
pendent. Knowing the outside temperature will change our expectations about
the heating costs, and vice versa.

There are many ways in which independence could be defined over languages.
If two languages like Japanese and Icelandic are independent, the definition im-
plies that if we know, for example, the word for some animal in Japanese, this will
not help us in any way to predict how that animal might be called in Icelandic
(jpn ⟂⟂ isl). In contrast, if we know that a snake is called slange in Danish, this
will allow us to make a more educated guess about the German word. Such an
educated guess might be successful in some cases (German Schlange ‘snake’) and
less successful in others (Danish ræv vs. German Fuchs ‘fox’), but knowledge of
the one language helps us to predict the word in the other languages in enough
cases to be statistically relevant (dan ⟂⟂/ deu).

Moving one step further, the central notion for causal inference is the condi-
tional independence of a pair of (sets of) variables given a set of other variables. If
two variables 𝑋 and 𝑌 are dependent, but conditionally independent given a set
of variables 𝑍 , we say that the dependence disappears when conditioning on 𝑍 .
Intuitively, if we know the values of the variables in 𝑍 , knowing the value of 𝑋
will not tell us anything new about the value of 𝑌 , and knowing 𝑌 will not add
to our knowledge about 𝑋 .
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For the formal definition, let 𝑝 be a joint probability function over a finite set
𝑉 of variables. For any sets 𝑋, 𝑌 , 𝑍 ⊆ 𝑉 , we say that 𝑋 and 𝑌 are conditionally
independent given 𝑍 [in symbols: (𝑋 ⟂⟂ 𝑌 | 𝑍)] if 𝑝(𝑥|𝑦, 𝑧) = 𝑝(𝑥|𝑧) whenever
𝑝(𝑦, 𝑧) > 0.

In the heating example, we will certainly observe a dependence (𝑃 ⟂⟂/ 𝑅) be-
tween the temperature preference 𝑃 and the room temperature 𝑅. However, it is
certainly not the case that the room temperature will drop just because we want
it to do so, and a rising temperature in the bedroom will only increase our dis-
comfort, but not the temperature at which we would want to sleep. Instead, the
process connecting these two variables is mediated by the heating costs 𝐻 , and
we are going to have (𝑃 ⟂⟂ 𝑅 | 𝐻) because if we are not allowed to manipulate
the heating, our preferences will not have any impact on the room temperature
any longer.

Conditional independence relations hold between many types of knowledge
we might have about languages as well. For instance, Swedish (swe) is more
closely related to Danish than German is, which is why on average, additional
knowledge of German will not help us to understand a Swedish word if we al-
ready understand the Danish one (swe ⟂⟂ deu | dan). To illustrate, take the words
for ‘bird’ (fågel/fugl/Vogel), where German would have helped almost as much
as Danish, and the words for ‘ant’ (myra/myre/Ameise), where Danish is much
closer to Swedish. The latter example also shows why we would likely get (swe
⟂⟂/ dan | deu) from any useful criterion of conditional independence.

The conditional independence relation (𝑋 ⟂⟂ 𝑌 | 𝑍) has a number of interesting
properties, most of which should be intuitively obvious. For instance, it satisfies
symmetry in the sense that (𝑋 ⟂⟂ 𝑌 | 𝑍) implies (𝑌 ⟂⟂ 𝑋 | 𝑍), which we can
interpret to mean that if 𝑋 does not tell us anything about 𝑌 , neither will 𝑌
provide us with any information about 𝑋 . This is a very natural assumption for
languages as well, since language relatedness is a symmetric relation.

It also has the decomposition property in the sense that jointly irrelevant pieces
of information do not become relevant when considered separately, i.e. (𝑋 ⟂⟂
𝑌𝑊 | 𝑍) ⇒ (𝑋 ⟂⟂ 𝑌 | 𝑍). For instance, given that the knowledge of both a
person’s income and his or her temperature preferences does not allowus to draw
any conclusions about the climate, it makes sense to assume that neither will
income or preference data alone. To understand why the decomposition property
holds for languages aswell, consider the situationwhere two groups of languages
do not share any features that are not explainable by a third set of languages. If
this is the case, this third set will also explain all the overlap between individual
languages from the two groups. For instance, if we have established that Proto-
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Indo-European can be used to explain all similarities between Indo-Aryan and
Germanic languages (IndoAryan ⟂⟂ Germanic | PIE), we can conclude that it will
also explain the (fewer) similarities between individual language pairs such as
Sanskrit and German (san ⟂⟂ deu | PIE), or Pali and English (pli ⟂⟂ eng | PIE).

Another property is weak union, which states that an irrelevant piece of infor-
mation 𝑌 will not suddenly become relevant if we learn another irrelevant piece
of information𝑊 , or (𝑋 ⟂⟂ 𝑌𝑊 | 𝑍) ⇒ (𝑋 ⟂⟂ 𝑌 | 𝑍𝑊). In the heating cost exam-
ple, neither the household income nor the outside temperature allow us to say
anything about the room temperature, and we would be very surprised if, say,
a correlation between the two temperatures would appear once we look at rich
households only. For groups of languages whose similarities are explained by a
third language, like in the previous example situation (IndoAryan ⟂⟂ Germanic
| PIE), we would not expect one of the languages from one group (say, Gothic)
to provide additional information that makes the remainder of the group appear
more similar to Indo-Aryan, i.e. wewould also expect (IndoAryan⟂⟂NWGermanic
| PIE, Gothic). The weak union property thus mirrors the informativeness of lan-
guages in historical linguistics, where relevant (i.e. non-random) similarities will
always become clearer if additional languages are taken into account.

Conversely, a contraction property also holds, stating that information𝑊 that
is irrelevant after learning another piece of irrelevant information 𝑌 , must have
been irrelevant all along: (𝑋 ⟂⟂ 𝑌 | 𝑍) ∧ (𝑋 ⟂⟂ 𝑊 | 𝑍𝑌) ⇒ (𝑋 ⟂⟂ 𝑌𝑊 | 𝑍). In
the heating costs example, we know that the outside temperature 𝑂 is not con-
nected in any way to household income 𝐼 . Assume that in two separate studies
of richer and poorer people, no connection between people’s preferences 𝑃 and
the outside temperature 𝑂 was found, i.e. it was established that (𝑃 ⟂⟂ 𝑂 | 𝐼 ).
In this situation, it would appear nonsensical if it turned out that in the overall
population, we had (𝑃 ⟂⟂/ 𝑂). Similarly, considering the relationships between
branches of Indo-European, if we used Iranian evidence to explain the similar-
ities between Slavic and Armenian (Slavic ⟂⟂ Armenian | PIE, Iranian), but also
found that Slavic and Iranian are independent branches that did not remain in
similarity-inducing contact after the split-up of Proto-Indo-European (Slavic ⟂⟂
Iranian | PIE), we know that we would have needed Iranian to split Slavic from
Armenian. On the other hand, contraction does not exclude the possibility that
(Iranian ⟂⟂/ Armenian | PIE), which we would actually not be surprised to find
given the considerable influence of Iranian languages on Armenian.

Finally, there is an intersection property stating that if given some other knowl-
edge 𝑍 , two sets of variables are mutually irrelevant to a set of variables 𝑋 , nei-
ther of them will be relevant to 𝑋 in isolation (nor jointly, by decomposition):
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(𝑋 ⟂⟂ 𝑊 | 𝑍𝑌) ∧ (𝑋 ⟂⟂ 𝑌 | 𝑍𝑊) ⇒ (𝑋 ⟂⟂ 𝑌𝑊 | 𝑍). Expanding on the heating
cost example to get an instance of this reasoning pattern, let us introduce the lat-
itude 𝐿 into the picture. Obviously 𝐿 is going to influence 𝑂. Moreover, assume
that due to historical scarcity of heating materials, people in climates with lower
𝑂 have developed a culture that reduces the window size 𝑊 . In this situation,
where both (𝐿 ⟂⟂ 𝑅 | 𝑂,𝑊 ) and (𝐿 ⟂⟂ 𝑊 | 𝑂, 𝑅) hold, we would not expect to
find either (𝐿 ⟂⟂/ 𝑅 | 𝑂) or (𝐿 ⟂⟂/ 𝑊 | 𝑂), because the average outside temperature
should already provide all the necessary explanation for the connection between
latitude and window size. To also motivate the intersection property among sets
of languages, we will consider a likely configuration of conditional independence
statements involving Irish (gle), Icelandic (isl), and Spanish (spa). Since these
three languages come from separate branches of Indo-European, and have not
been in contact since PIE split up, we would expect (gle ⟂⟂ isl | PIE, spa) and (gle
⟂⟂ spa | PIE, isl) to hold in the absence of selection bias. These constraints say
that provided with background information about the common Indo-European
elements, Icelandic does not tell us anything new about Irish if we already know
Spanish, but neither does Spanish if we already know Icelandic. In this situation,
it would be nonsensical to assume that both languages together would provide
any relevant information about Icelandic, which is mirrored by the intersection
property telling us that (gle ⟂⟂ isl, spa | PIE). To understand why this reasoning
pattern is only valid if the irrelevance is mutual, consider the same situation with
Dutch (nld) and English instead of Icelandic and Spanish.The situation for Dutch
is similar to the one for Icelandic, so that we will have (gle ⟂⟂ nld | PIE, eng), but
the reverse does not hold any more, because English and Irish have been in con-
tact (gle ⟂⟂/ eng | PIE, nld). Here it makes sense that the reasoning pattern does not
apply, because otherwise we had (gle ⟂⟂ nld, eng | PIE), which would imply the
wrong statement (gle ⟂⟂ eng | PIE) by decomposition.

After stating the different properties of conditional independence, and under-
standing that they represent very general reasoning patterns that make sense in
many domains, we can now take the decisive step connecting conditional inde-
pendence constraints to graphs. If we picture the different variables as nodes, and
the edges as communication channels which allow the transfer of information
in both directions, we find that the conditional independence relation can be as-
signed a straightforward interpretation in terms of paths in a graph. If we define
(𝑋 ⟂⟂ 𝑌 | 𝑍) as meaning that every path from a node in 𝑋 to a node in 𝑌 will be
blocked by some node in 𝑍 , the relation has the same five properties, which are
therefore called the graphoid axioms. Together, they have been found to char-
acterize informational relevance very well in many different contexts, and the
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examples may already have convinced the reader how close the correspondence
in fact is. Conditional independence relationships will give us testable elemen-
tary statements which we can use to construct graphs over languages, such as
the one in Figure 3.1, which will become our running example to illustrate my
view on lexical flow networks. In this much simplified picture of the interactions
as reconstructed by linguists, the edges represent information flow, and more
specifically, the flow of lexical material, between various historical stages of the
three major languages of East Asia. For instance, the theory represented by the
graph states that the information flow fromOld Chinese to Old Japanese was me-
diated either by Middle Chinese or Old Korean, whereas Middle Chinese directly
influenced it. In the next section, we will establish a systematic correspondence
of such path constraints with conditional (in)dependence statements such as, in
this case, (𝑂𝐶 ⟂⟂ 𝑂𝐽 | 𝑂𝐾,𝑀𝐶) and (𝑀𝐶 ⟂⟂/ 𝑂𝐽 | 𝑂𝐾, 𝑂𝐶).

Old Chinese (OC) Proto-Koreanic (PK) Proto-Japonic (PJ)

Middle Chinese (MC)

Old Korean (OK)

Old Japanese (OJ)

Mandarin (cmn) Korean (kor) Japanese (jpn)

Figure 3.1: Example graph over (selected) languages of East Asia

As a final remark about conditional independence, it is worth emphasizing
that conditioning on additional variables can not only remove dependencies, but
it can also induce dependencies between otherwise independent variables. As
stated earlier for our heating costs example, we are likely to observe an indepen-
dence (𝑅 ⟂⟂ 𝑂) if we do not condition on anything else. However, this is only
the case because people will regulate the heating to ensure a constant 𝑅. But any
fixed investment 𝐻 into heating will be more or less effective at different outside
temperatures. For fixed 𝐻 , room temperature will therefore begin to depend on
the outside temperature, so that we have a conditional dependence (𝑅 ⟂⟂/ 𝑂 | 𝐻),
whereas we had (𝑅 ⟂⟂ 𝑂).This is also the pattern underlying selection bias, which
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can be treated in the framework of conditional independence relations by intro-
ducing a hidden selection variable 𝑆, and assuming that the data are actually from
the conditional distribution given 𝑆. This effectively turns every statement of the
form (𝑋 ⟂⟂/ 𝑌 ) into an underlying (𝑋 ⟂⟂/ 𝑌 | 𝑆), which does not contradict (𝑋 ⟂⟂ 𝑌)
in the underlying truth.

Selection bias is a frequent problem in the application of statistical arguments
within historical linguistics. For any linguist trying to prove that two groups of
languages are related, it is difficult to avoid a natural tendency to filter the ma-
terial in some way, e.g. by focusing on certain parts of the vocabulary that seem
more promising.This becomes a problem as soon as statistical testing comes into
play, where bias-free sampling is essential for estimating the amount of similarity
that we would expect by chance, and therefore correctly determining the signif-
icance level. To illustrate that selection bias can also have an impact on purely
data-driven approaches, assume that we want to assess by large-scale vocabulary
comparison whether there is a hidden common ancestor between Basque (eus)
and Albanian (sqi), such as a common Old European substrate. In a balanced sam-
ple of our vocabulary, we would very likely find (eus ⟂⟂ sqi). Now assume that we
want to build the analysis on parallel word lists which include the oldest attested
languages of Europe, such as Gothic (got). If the compiler of these word lists had
any tendency to tune the selection of concepts towards those for which a Gothic
word is known, e.g. in order to create a more fully populated table, the nature of
the only available longer Gothic text (a Bible translation) will induce a selection
bias. Both Basque and Albanian are heavily influenced in their religious vocab-
ulary by Latin and Romance languages, which could easily lead to a statistically
significant similarity on the word list (eus ⟂⟂/ sqi | got), even though we only con-
sidered data for the two languages, and might erroneously conclude that (eus ⟂⟂/
sqi). The same could happen in corpus-based approaches that rely on religious
texts such as Bible translations, which are quite frequently the only available
written records especially of smaller languages that do not have an indigenous
writing tradition.

3.1.4 Bayesian networks

The more variables we consider, the more difficult it becomes to estimate and
represent their joint distribution. However, if factorizations of the joint distri-
bution function are possible, they can be used to build a directed acyclic graph
(DAG) where each node contains the conditional probability distribution of one
variable given a set of parent variables. The resulting Bayesian networks provide
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a very compact way of representing joint distributions of many variables, and
lend themselves very well to a range of important inference tasks. Pearl (1988) is
the classical book on Bayesian networks, which explains many of the basic no-
tions and issues in a very detailed and readable fashion, including the motivation
of the following definitions.

Let 𝑝(𝑣) be the joint probability distribution on an ordered set 𝑉 = {𝑋1, … , 𝑋𝑛}
of variables. A set 𝑃𝐴𝑗 ⊂ 𝑉 is said to be the Markovian parents of a variable
𝑋𝑗 ∈ 𝑉 if it is a minimal set of predecessors of 𝑋𝑗 that renders 𝑋𝑗 independent
of all its other predecessors. In our East Asian example, {𝑂𝐽 , 𝑂𝐶} is not the set
of Markovian parents of Japanese, because according to the graph, this set does
not explain all the overlap between Middle Chinese and Japanese. Adding Mid-
dle Chinese to the set will still not give us the Markovian parents of Japanese,
because the subset {𝑀𝐶, 𝑂𝐽 } already covers all paths from any other language
into Japanese, and Old Chinese is not a Markovian parent, because it is screened
off by the other two languages in the set {𝑀𝐶, 𝑂𝐽 }, which is therefore the set of
Markovian parents of Japanese. Note that the situation could be different if we
had chosen to model, say, Middle Japanese in addition, which would replace Old
Japanese in the set of Markovian parents.

If a probability function 𝑝 admits the factorization 𝑝(𝑥1, … , 𝑥𝑛) = ∏𝑖 𝑝(𝑥𝑖 | 𝑝𝑎𝑖)
relative to a DAG 𝐺, we say that 𝑝 and 𝐺 are (Markov) compatible. In words, each
variablemust be independent of its non-descendants in the graph if the state of its
Markovian parents is known. We say that a joint distribution fulfills the Markov
condition if there is some graph to which it is compatible. As we have seen, the
graph is mirrored by a factorization of the joint probability distribution, which
can be used to compactly represent and efficiently perform calculations on joint
and marginal probabilities.

Later textbooks such as Koller & Friedman (2009) build on a much more ad-
vanced theory and two decades of practical experience in applying graphical
models to many problems. However, Bayesian networks have developed into a
separate field which is mainly concerned with other tasks, such as the efficient
inference of marginal distributions from joint distributions encoded as networks.
This newer literature might therefore serve less well to lead the viewer towards
an understanding of their importance for causal reasoning, a topic which we turn
to in the next section.

3.1.5 Causal interpretation of Bayesian networks

From a philosophical angle, it appears attractive to give a causal interpretation
to Bayesian networks, taking the directed arcs in Bayesian networks to repre-
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sent direct causal influence of one variable on another. Pearl (2009) presents
a range of ideas that follow from this viewpoint. Reinterpreting Bayesian net-
works not as convenient representations of joint probability distributions, but
as causal DAGs which actually model the causal processes that generated the
data, makes it possible to predict what happens if one of the variables is manip-
ulated from the outside. Pearl develops this idea into a full intervention calculus,
providing a framework for calculating answers to counterfactual questions as
they arise in jurisdiction when, for instance, responsibility for an accident needs
to be decided, and which previously were notoriously difficult to grasp mathe-
matically. As Pearl shows, his fresh view of causality also provides a handle on
long-standing statistical paradoxes like Simpson’s paradox, where the direction
of a correlation between two variables can revert in each individual case when
we consider all values of a third value separately. Using the calculus of interven-
tions with its true manipulation operation distinct from conditioning, the seem-
ing paradoxes instantly disappear. As Pearl shows, they only existed due to a
confusion of conditioning and manipulation, two operations which the classical
statistical methods could not cleanly distinguish. By giving a causal interpreta-
tion to Bayesian networks, and thinking about experiments as manipulating the
network, we gain a mathematical language for speaking about causality.

Stepping back from predicting the consequences of manipulation, the condi-
tional independence relations we can extract from observational data can be ex-
ploited systematically to infer parts of the process which generated the data.This
algorithmic side of causal analysis was further developed by Spirtes et al. (2000).
Their book provides many of the technical proofs for the theory of inferred cau-
sation, and contains the first versions of several central algorithms which I will
build upon in this book. It also provides a wealth of impressive examples, includ-
ing a very in-depth discussion of how causal inference can be used on existing
data to prove once and for all that smoking does cause lung cancer.The argument
effectively destroys the tobacco industry’s last line of defense, which consisted
in claiming that the correlation might be due to a genetic predisposition which
causes both a taste for cigarettes, and a propensity to develop lung cancer, an
explanation which seems absurd, but cannot be ruled out by classical statistical
methods.

In this book, I explore how this framework can be applied to languages. If we
manage to model language graphs such as the East Asian example in Figure 3.1
as Bayesian networks, we can give a causal interpretation to the arrows, and
should be able to use causal inference in order to infer the structure of the net-
work which generated the observable data. If our observations consist of lexical
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data (as they do in this book), the causal graph can be interpreted as a minimal
explanation of how the observed patterns could result from languages influenc-
ing each other, either by inheritance (as in the case of Old Chinese and Middle
Chinese) or by borrowing (as in the case of Japanese influence on Korean). Each
directed arc will represent the transmission of lexical material, and depending
on how the underlying conditional independence tests are implemented, each
link will correspond to a set of etymologies, detailing which words the model
assumes to have been transmitted along which path through the network.

Unfortunately, as we shall see, applying causal inference in practice to a new
domain is a lot less straightforward and instantly rewarding than such examples
would suggest. The proliferation of additional approximation tricks and process-
ing steps in the literature is a tell-tale sign that one should never expect readily
available implementations to yield useful results on a new problem, such as lex-
ical flow modeling in my case. Still, most work on causal inference takes place
within the confines of an almost canonical set of basic ideas and algorithmic
procedures, and it is this core of the causal toolbox that I will be introducing
throughout the rest of this chapter.

3.2 Causal inference algorithms

This section introduces the basics of causal inference or causal discovery, which
is defined as the task to analyse a set of data (observations of three or more
variables) to find a causal structure (a partially directed acyclic graph) which mir-
rors the data-generating process as closely as possible. After laying out the basic
assumptions and theoremswhich link conditional independence relations to con-
straints on the graph structure, I will give an overview of different approaches
to testing for conditional independence, and then proceed to motivating and de-
scribing the most important causal inference algorithms. Pointers to the relevant
literature will enable the reader to find proofs and more general variants of the
various mathematical theorems which are needed to explain the motivation be-
hind the algorithms, and why they work.

3.2.1 Causal graphs

I start by defining precisely the mathematical objects that I will be operating on.
After defining different types of (partially) directed graphs which can be used
to represent causal structures, and basic graph-theoretic notions which will be
needed afterwards, I introduce the central notion of d-separation, and its gener-

64



3.2 Causal inference algorithms

alization to ancestral graphs. Then, the main assumptions and theorems which
link conditional independence relations and possible causal graphs are cited and
put into context.

3.2.1.1 Basic definitions

A causal graph 𝐺 = (𝑉 , 𝐸) consists of a set of nodes 𝑉 which represent random
variables, and a set of edges 𝐸 ⊂ 𝑉 × 𝑉 which will be taken to represent the
causal connections between those variables. In the more general variant where
the presence of hidden common causes and selection bias cannot be excluded, we
have a partition 𝐸 = 𝐸→∪𝐸↔∪𝐸— into directed arcs which represent direct causal
links, bidirected arcs which represent the existence of a hidden common cause
for the two variables in question, and undirected arcs to represent the presence
of selection bias inducing a dependence between two variables. For each of the
three relation types, we will typically just write 𝑋 — 𝑌 for (𝑋 , 𝑌 ) ∈ 𝐸—, 𝑋 → 𝑌
for (𝑋 , 𝑌 ) ∈ 𝐸→, and 𝑋 ↔ 𝑌 for (𝑋 , 𝑌 ) ∈ 𝐸↔.

There is some convenient short-hand terminology which can be used to talk
about the relations defined by the different edge types. For instance, the asymmet-
ric directed arcs in 𝐸→ define the parent relation, and in subsequent definitions
I will write 𝑝𝑎(𝑋) ∶= {𝑌 ∈ 𝑉 ∶ (𝑌 , 𝑋) ∈ 𝐸→} ro refer to the set of parents of 𝑋 .

A path in a graph 𝐺 is a sequence ⟨𝑋0, … , 𝑋𝑛⟩ of distinct vertices 𝑋0, … , 𝑋𝑛
where (𝑋𝑖 , 𝑋𝑖+1) ∈ 𝐸 for 0 ≤ 𝑖 < 𝑛. If in addition, (𝑋𝑖 , 𝑋𝑖+1) ∈ 𝐸→ for all 0 ≤ 𝑖 < 𝑛,
we have a directed path from 𝑋0 to 𝑋𝑛. If there is directed path from 𝑋 to 𝑌 , or
𝑋 = 𝑌 , 𝑌 is called a descendant of 𝑋 , and 𝑋 an ancestor of 𝑌 . For the set of
ancestors of any node 𝑋 ∈ 𝑉 , we will write 𝑎𝑛(𝑋). Applying this terminology to
our example network of East Asian languages, there is a directed path from Old
Chinese toMandarin, but no directed path from Japanese toMandarin. Deviating
from the standard terminology in historical linguistics, where every language
has a single ancestor, and the recipient language of a layer of borrowings is not
called a descendant of the donor language, in graph terminology Old Chinese is
an ancestor of both Mandarin and Japanese, whereas Japanese is a descendant of
both Old Japanese and Middle Chinese.
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A directed cycle pattern exists whenever we have a directed path from 𝑋 to
𝑌 , but also a link 𝑌 → 𝑋 , allowing us to get back to the beginning of the path.
Similarly, an almost directed cycle consists of a directed path ⟨𝑋 , … , 𝑌 ⟩ and a bidi-
rected arc 𝑌 ↔ 𝑋 . In our East Asian language network, we do not have a directed
cycle, and due to their temporal nature such cycles will not typically occur in lan-
guage networks, unless we collapse different stages of three languages between
which contacts in all directions have existed. For instance, if we did not treat Old
Korean (for which little lexical data is available) as distinct from Modern Korean,
we would get a directed cycle OJ → jpn → kor → OJ. The existence of directed
cycles in a lexical flow network will show us something was wrong with our
data, and causal inference algorithms therefore assume that directed cycles will
not occur.

If 𝐸↔ and 𝐸— are empty, and there are no directed cycles in 𝐸→, 𝐺 is called a
causal DAG.This type of structure is used to model situations in which causal suf-
ficiency holds, i.e. where there are no unobserved common causes which could
act as confounders. In the presence of confounders, we will instead rely on ances-
tral graphs, which do allow bidirectional links (nonempty 𝐸↔), but do not con-
tain any almost directed cycles, and additionally require that nodes connected
by undirected edges 𝑋𝑖 − 𝑋𝑗 do not have any parents, and are not connected to
further nodes by↔ edges. The East Asian language network can be considered a
causal DAG because all relevant causes of lexical overlap are explicitly modeled
as nodes. If we had left out reconstructed languages such as Old Korean and the
two proto-languages, these would act as confounders, and the resulting structure
could only be an ancestral graph.

Causal inference relies on certain configurations of directed and bidirected
edges. Many of these configurations have special and mnemonic names. For in-
stance, a pattern of the form 𝑋 → 𝑌 → 𝑍 is called a chain (e.g. OC → MC →
cmn), and a pattern 𝑋 ← 𝑌 → 𝑍 , such as the pattern kor ←MC → jpn, is called
a fork. Most importantly, a collider on a path is any node where arrow tips meet.
In the directed graph case, colliders can only have the form 𝑋 → 𝑌 ← 𝑍 , such
as in the pattern MC → jpn ← OJ. In the more general case of ancestral graphs
where bidirectional edges exist, the patterns 𝑋 ↔ 𝑌 ↔ 𝑍 , 𝑋 ↔ 𝑌 ← 𝑍 , and
𝑋 → 𝑌 ↔ 𝑍 count as colliders just as well. An unshielded collider or v-structure
is a collider 𝑋 → 𝑌 ← 𝑍 where (𝑋 , 𝑍) ∉ 𝐸. The five v-structures in the East
Asian language network are OC → OK ← PK, OK → OJ ← PJ, OK → OJ ←
MC, OK → kor ← MC, OK → kor ← jpn. As we shall see throughout this book,
the identifiability of v-structures is the cornerstone of constraint-based causal
inference, because they are the source of all evidence of directionality.
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3.2.1.2 d-Separation

To precisely capture the links between independence constraints and the graph
structure, we will need the notion of d-separation. Intuitively, two variables are d-
separated by a set of conditioning variables if every path by which information
might flow from one node to the other through the graph, is blocked in some
way by one of the variables we are conditioning on. In a directed graph, ways in
which information flow can be blocked are a bit involved, so that a quite technical
definition becomes necessary.

In Pearl’s definition, a path 𝑝 in a DAG 𝐺 is said to be d-separated by a set of
nodes Z iff

1. 𝑝 contains a noncollider, i.e. a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗,
with 𝑚 ∈ Z

2. 𝑝 contains a collider 𝑖 → 𝑚 ← 𝑗 such that 𝑚 ∉ Z and no descendant of 𝑚
is in Z

A set Z is said to d-separate 𝑋 from 𝑌 iff Z d-separates every path from a node
in 𝑋 to a node in 𝑌 . Paths and sets of nodes which are not d-separated are also
called d-connected.

To illustrate, let us first come back to the heating cost example, and consider
the paths between household income 𝐼 and latitude 𝐿. We have assumed a path
𝐼 →𝑊 ←𝑂←𝐿.This path is d-separated by the empty set {} because it contains
a collider. {𝑊 } does not d-separate 𝐼 and𝑂 because it contains the collider, but {𝑂}
(in a chain) does. We have also assumed a second path 𝐼 →𝑊 →𝐻 ←𝑂←𝐿
which is d-separated by the empty set as well, but d-connected by {𝐻}. The set
{𝐻 } also d-connects the first path because 𝐻 is a descendant of𝑊 . To summarize,
both {𝑊 } and {𝐻 } d-connect the variables 𝐼 and 𝐿, whereas the set {𝑂} d-separates
them because it d-separates both paths.

In the East Asian example network, Middle Chinese and Old Korean are d-
separated by Old Chinese because every other path between the two languages
contains a collider. If we add Japanese to the set 𝑍 , however, the two languages
become d-connected, because now we have a path 𝑂𝐾 → 𝑂𝐽 ← 𝑀𝐶 with a
collider that gets unblocked because one of its descendants is in K. We thus have
one d-connected path, which makes the two languages d-connected. To illustrate
how this abstract reasoning corresponds to information flow, note that Old Ko-
rean and Middle Chinese will seem completely independent if we discard all the
shared material from Old Chinese, e.g. by only looking at the lexical innovations
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in Middle Chinese, and checking whether they are reflected in Old Korean. How-
ever, if we additionally consider the loanwords from both languages in Japanese,
we will find that if we determined a word in Japanese as not having existed in
Middle Chinese, but we are sure that it already existed in Old Chinese, this will
allow us to conclude that it must have been borrowed from Old Korean via Old
Japanese, even if the word in question is not attested in any of the few sources in
Old Korean. Knowledge of Middle Chinese starts to provide us with information
about Old Korean, but only because both of these languages left traces in the
lexicon of modern Japanese.

For the case where 𝐺 is an ancestral graph, Richardson & Spirtes (2002) intro-
duce the more general notion ofm-separation, which is identical to the definition
of d-separation except that the more general definitions of collider and noncol-
lider are used, where bidirected arrows are allowed. A maximal ancestral graph
(MAG) for a distribution 𝑃 then is an ancestral graph for 𝑃 with the additional
property that for any pair of non-adjacent nodes there is a set by which they
are m-separated. As we shall see, there is a direct correspondence between m-
separation in 𝐺 and conditional independence relationships in 𝑃 .

3.2.1.3 Faithfulness

To repeat the definition of a Bayesian network, a distribution 𝑝 fulfills theMarkov
condition with respect to a DAG 𝐺 if it factorizes according to the parent rela-

tionship defined by 𝐺, i.e. if 𝑝(𝑋1, … , 𝑋𝑛) = ∏𝑘
𝑖=1 𝑞(𝑋𝑖 | 𝑝𝑎(𝑋𝑖 , 𝐺)). If there is any

such DAG, 𝑝 fulfills the Causal Markov Condition, one of the preconditions for
constraint-based causal inference.

A distribution 𝑝 is called faithful to a DAG 𝐺 if the conditional independence
relationships which hold in 𝑝 are exactly the ones implied by the d-separation
criterion on𝐺.We call the distribution 𝑝 as awhole faithful if it is faithful to some
DAG. This Causal Faithfulness Condition is the second precondition for causal
inference. Informally, it ensures that there are no spurious independences which
occur just because some numbers happen to cancel out perfectly. For instance,
for an independence test based on vanishing partial correlation, this implies that
the correlation must never become zero for a pair of dependent variables.

In the heating costs example, the previously determined d-separating sets on
our paths 𝐼 →𝑊 ←𝑂←𝐿 and 𝐼 →𝑊 →𝐻 ←𝑂←𝐿 imply that a distribution
that is faithful to our scenario should show the conditional independence rela-
tionships (𝐼 ⟂⟂ 𝐿) and (𝐼 ⟂⟂ 𝐿 | {𝑂}), but the conditional dependence (𝐼 ⟂⟂/ 𝐿 | {𝐻}).
Conditioning on 𝐻 is thus predicted to induce a dependency between 𝐼 and 𝐿,
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which fits with our previous considerations because in a selection of households
with identical heating costs, the richer households will tend to cluster in regions
with lower latitudes, because the larger window panes of the rich will cause
high heating costs even in less severe winters. As the constraints predicted by
d-separation say, the dependence should disappear again if we additionally con-
dition on 𝑂, because we then look at each region separately.

3.2.1.4 (In)Dependence constraints and graph patterns

Given faithfulness, a collider 𝐴 → 𝐶 ← 𝐵 corresponds to the following two con-
ditional (in)dependence constraints: (𝐴 ⟂⟂ 𝐵), but (𝐴 ⟂⟂/ 𝐵 | 𝐶). We have seen this
in the heating costs example, where the true pattern𝑊 → 𝐻 ← 𝑅 was reflected
by the observations that (𝑅 ⟂⟂ 𝑊), the room temperature was independent of the
window size, but (𝑅 ⟂⟂/ 𝑊 | 𝐻), not for fixed heating costs.

In contrast, the fork 𝐴 ← 𝐶 → 𝐵 as well as the chains 𝐴 → 𝐶 → 𝐵 and
𝐴 ← 𝐶 ← 𝐵 all correspond to (𝐴 ⟂⟂/ 𝐵), but (𝐴 ⟂⟂ 𝐵 | 𝐶). To distinguish between
these possibilities, we would need additional variables and additional conditional
independencies. This shows that conditional independencies alone do not com-
pletely determine causal structure. For instance, if we wanted to use conditional
independence tests in order to decidewhich direction of borrowing is responsible
for the shared lexical material between English and Japanese, we will not be able
to do this based on data from another heavy recipient of English loanwords such
as the Dravidian language Telugu (tel). We will find that (tel ⟂⟂/ jpn) due to shared
loanwords from English, but that (tel ⟂⟂ jpn | eng), because these loanwords are
the only source of lexical overlap between the two languages. In addition to the
underlying fork (tel ← eng → jpn), this independence pattern could be due to a
chain (tel → eng → jpn) or a chain (jpn → eng → tel), as long as we only take
data from these three modern languages into account. This ambiguous configu-
ration of (in)dependence constraints will appear very commonly when language
isolates are involved.

So howmuch about the true graph canwe determine from (in)dependence con-
straints?There are several central theorems in the literature which show that the
relationship is rather close. Given causal sufficiency, for each faithful and Marko-
vian probability distribution there is a DAGwhose d-separation relationships cor-
respond exactly to the conditional independencies in the distribution. Crucially
for the inference task, it further turns out that the v-structures in a DAG 𝐺 alone
fully determine the probability distributions that are compatible with G. If two
graphs contain the same v-structures, causal inference cannot distinguish them,
and they are Markov equivalent. Markov equivalence therefore partitions DAG
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structures into Markov equivalence classes, the members of which cannot be
distinguished by constrained-based causal inference. Each Markov equivalence
class can be represented by a completed partially directed acyclic graph (CPDAG),
i.e. an acyclic graph where edges may be undirected, representing the fact that
some of the Markov equivalent DAGs have an arrow in one direction on this
edge, and some others have an arrow in the reverse direction.

In the absence of causal sufficiency, the correspondence between graph struc-
ture and independence constraints gets a little less direct. Again moving to the
more complex case where latent common causes and selection bias might be
present, we find that each Markov equivalence class of MAGs can be represented
by a partial ancestral graph (PAG). For an underlying DAG 𝐺 = (𝑋 ∪ 𝐿 ∪ 𝑆, 𝐸→)
over a set of observed variables 𝑋 , a set of latent variables 𝐿, and a set of selec-
tion variables 𝑆, a PAG which represents 𝐺 is a graph 𝐺′ = (𝑋 , 𝐸′) over 𝑋 with
six edge types → , ◦→ , ◦—◦ , ↔ , — , and ◦— , if for every distribution 𝑃 that is
faithful to 𝐺, we have

• (𝑋𝑖 , 𝑋𝑗) ∉ 𝐸′ ⇒ ∃𝑌 ⊆ 𝑋\{𝑋𝑖 , 𝑋𝑗} ∶ (𝑋𝑖 ⟂⟂ 𝑋𝑗 | 𝑌 )𝑃
• (𝑋𝑖 , 𝑋𝑗) ∈ 𝐸 ⇒ ∀𝑌 ⊆ 𝑋\{𝑋𝑖 , 𝑋𝑗} ∶ (𝑋𝑖 ⟂⟂/ 𝑋𝑗 | 𝑌 )𝑃
• 𝑋𝑖 →𝑋𝑗 or 𝑋𝑖 ◦→𝑋𝑗 or 𝑋𝑖 ↔𝑋𝑗 ⇒ 𝑋𝑗 ∉ 𝑎𝑛(𝑋𝑖 , 𝐺′)
• 𝑋𝑖 —𝑋𝑗 or 𝑋𝑖 ← 𝑋𝑗 or 𝑋𝑖 ◦—𝑋𝑗 ⇒ 𝑋𝑗 ∈ 𝑎𝑛(𝑋𝑖 , 𝐺′)

This rather complex definition captures the type of graph structure we can op-
timally derive to approximate an underlying true causal graph, based only on
conditional independence tests for a subset of observed variables. Whereas the
definition of the arrow types → and ↔ is as before, for the equivalence classes
we additionally use the end symbol ∘ to designate uncertainty, such that 𝑋𝑖 —◦𝑋𝑗
means “𝑋𝑖 —𝑋𝑗 or 𝑋𝑖 →𝑋𝑗”, and 𝑋𝑖 ◦→𝑋𝑗 means “𝑋𝑖 →𝑋𝑗 or 𝑋𝑖 ↔𝑋𝑗” PAGs
will be the output structures of the FCI and RFCI algorithms described in §3.2.4,
which I will apply to language data in Chapter 7.

To characterize Markov equivalence classes of MAGs, and therefore the struc-
tures represented by PAGs, we need the definition of a special kind of path, which
will later also play a role in PAG inference. A discriminating path for a vertex 𝑉
is a path ⟨𝑋 , … ,𝑊 , 𝑉 , 𝑌 ⟩ of at least three edges, where 𝑋 and 𝑌 are non-adjacent,
and every vertex between 𝑋 and 𝑉 is a collider as well as a parent of 𝑌 .

Informally, a discriminating path provides an environment for a node 𝑉 which
allows us to safely identify it as a collider even within a triangle. Spirtes &
Richardson (1997) show that twoMAGs are Markov equivalent if and only if they
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have the same undirected link structure and the same v-structures (i.e. are equiv-
alent as CPDAGs), and furthermore have identical colliders among all nodes for
which shared discriminating paths exist. Discriminating paths can therefore be
seen as providing the environments in which unshielded colliders can safely be
established, even in the presence of confounders.

3.2.2 Determining conditional independence relations

As we have seen in the previous section, any causal inference method which
builds on inferring a causal graph from constraints will need a reliable way of
deciding for any pair of observed variables 𝑋 and 𝑌 whether they are dependent
or not given different subsets Z of all observed variables. The reliability of these
conditional independence tests are the main issue for the reliability of causal in-
ference, because given perfect judgments, the theorems give us certainty that
we will arrive at an equivalence class of correct structures. Causal inference al-
gorithms mainly differ in how well they can recover from possible wrong condi-
tional independence decisions.

3.2.2.1 Testing for vanishing partial correlation

Themost straightforward statistical tests for conditional independence are based
on testing for vanishing partial correlation. As Baba et al. (2004) show, this is only
guaranteed to work under the assumption that all involved variables are multi-
variate Gaussian, and does not provide us with a good test for other distributions,
including discrete variables.

The Pearson correlation coefficient 𝜌𝑋𝑌 of two variables 𝑋 and 𝑌 is defined as
follows:

𝜌𝑋𝑌 ∶= 𝐶𝑜𝑣(𝑋 , 𝑌 )
√𝑉𝑎𝑟(𝑋) ⋅ √𝑉𝑎𝑟(𝑌 )

It is thus a normalization of the covariance 𝐶𝑜𝑣(𝑋 , 𝑌 ) ∶= 𝐸[(𝑋 −𝐸[𝑋])(𝑌 −𝐸[𝑌 )],
which measures whether the two variables tend to deviate from their means in
the same directions. We say that 𝑋 and 𝑌 are correlated if and only if 𝜌𝑋𝑌 ≠ 0.

A conditional variant is defined by the partial correlation 𝜌𝑋𝑌 ⋅Z, which is de-
fined as the Pearson correlation 𝜌𝑅𝑋𝑅𝑌 of the residuals 𝑅𝑋 and 𝑅𝑌 resulting from
the linear regression of 𝑋 and 𝑌 with Z. For instance, to compute the residual
𝑅𝑋 for a vector of 𝑛 regression variables Z = {𝑍1, … , 𝑍𝑛} from 𝑁 observations,
we need to find the 𝑛-dimensional coefficient vector w∗

𝑋 which optimizes the
following minimization problem:

71



3 Foundations: Causal inference

w∗
𝑋 = arg,min

w
; {

𝑁
∑
𝑖=1

(𝑥𝑖 − ⟨w, zi⟩)2}

The observations of the residual 𝑅𝑋 are then 𝑥𝑖 − ⟨w∗
𝑋 , zi⟩ for 1 ≤ 𝑖 ≤ 𝑁 , from

which we can compute the Pearson correlation with the analogous residual 𝑅𝑌 .
A more direct alternative is to compute 𝜌𝑋𝑌 ⋅Z via a recursive formula, which

uses several partial correlations of lower order to compute one partial correlation
of higher order, with Pearson correlation as the base case. For any 𝑍0 ∈ Z, we
have:

𝜌𝑋𝑌 ⋅Z = 𝜌𝑋𝑌 ⋅Z\{𝑍0} − 𝜌𝑋𝑍0⋅Z\{𝑍0}𝜌𝑍0𝑌 ⋅Z\{𝑍0}
√1 − 𝜌2𝑋𝑍0⋅Z\{𝑍0}√1 − 𝜌2𝑍0𝑌 ⋅Z\{𝑍0}

To test for vanishing partial correlation in order to establish conditional inde-
pendence, Spirtes et al. (2000: 5.5) use Fisher’s z-transform of the partial correla-
tion ̂𝜌𝑋𝑌 ⋅Z in the sample:

𝑧( ̂𝜌𝑋𝑌 ⋅Z) ∶=
1
2 ln (

1 + ̂𝜌𝑋𝑌 ⋅Z
1 − ̂𝜌𝑋𝑌 ⋅Z

)

If 𝑁 is the sample size, √𝑁 − |Z| − 3 ⋅ 𝑧( ̂𝜌𝑋𝑌 ⋅Z) roughly approximates a standard
normal distribution if the null hypothesis ̂𝜌𝑋𝑌 ⋅Z = 0 holds. To see whether the
vanishing correlation assumption can be rejected, we thus test whether we have

√𝑁 − |Z| − 3 ⋅ |𝑧( ̂𝜌𝑋𝑌 ⋅Z)| > Φ−1(1 − 𝛼
2 ) for the cumulative distribution function

Φ of the standard normal distribution. This is the default option for conditional
independence tests implemented in the R package pcalg by Kalisch et al. (2012).

3.2.2.2 Testing for independence in the discrete case

Spirtes et al. (2000: 5.5) also describe standard procedures for conditional inde-
pendence tests in the discrete case. If we see each cell count 𝑥𝑖𝑗 in a table re-
sulting from 𝑁 samples of two variables 𝑋𝑖 and 𝑋𝑗 as one multinomially dis-
tributed variable, the expected value of 𝑥𝑖𝑗 under the independence assumption

is 𝐸(𝑥𝑖𝑗) = ∑𝑗 𝑥𝑖𝑗 ⋅∑𝑖 𝑥𝑖𝑗
𝑁 . If we add a third variable 𝑋𝑘 for which (𝑋𝑖 ⟂⟂ 𝑋𝑗 | 𝑋𝑘),

the corresponding cell 𝑥𝑖𝑗𝑘 will have the expected value 𝐸(𝑥𝑖𝑗𝑘) =
∑𝑗 𝑥𝑖𝑗𝑘 ⋅∑𝑖 𝑥𝑖𝑗𝑘

∑𝑖,𝑗 𝑥𝑖𝑗𝑘
.
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Analogously, for 𝑛 conditioning variables 𝑋𝑘1 , … , 𝑋𝑘𝑛 , we get

𝐸(𝑥𝑖𝑗𝑘1…𝑘𝑛) =
∑𝑗 𝑥𝑖𝑗𝑘1…𝑘𝑛 ⋅ ∑𝑖 𝑥𝑖𝑗𝑘1…𝑘𝑛

∑𝑖,𝑗 𝑥𝑖𝑗𝑘1…𝑘𝑛
These expected cell counts can be tested against the observed values using stan-

dard tests. Under the independence assumption, the following two test statistics
are both 𝜒2-distributed for an appropriate number of degrees of freedom 𝑑𝑓 :

𝜒2 ∶= ∑
𝑖,𝑗,𝑘1,…,𝑘𝑛

(𝑥𝑖𝑗𝑘1…𝑘𝑛 − 𝐸(𝑥𝑖𝑗𝑘1…𝑘𝑛))2
𝐸(𝑥𝑖𝑗𝑘1…𝑘𝑛)

𝐺2 ∶= 2 ⋅ ∑
𝑖,𝑗,𝑘1,…,𝑘𝑛

𝑥𝑖𝑗𝑘1…𝑘𝑛 ln (
𝑥𝑖𝑗𝑘1…𝑘𝑛

𝐸(𝑥𝑖𝑗𝑘1…𝑘𝑛)
)

In principle, the degrees of freedom for a test of the conditional independence
(𝑋𝑖 ⟂⟂ 𝑋𝑗 |𝑋𝑘1 , … , 𝑋𝑘𝑛) can be computed from the number of categories 𝐶𝑎𝑡 for
each variable as follows:

𝑑𝑓 = (𝐶𝑎𝑡(𝑋𝑖) − 1) ⋅ (𝐶𝑎𝑡(𝑋𝑗) − 1) ⋅
𝑛
∏
𝑖=1

𝐶𝑎𝑡(𝑋𝑘𝑖 )

This number is exponential in the number of conditioning variables, which will
quickly lead to zero entries in the table that need to be corrected for. In the ab-
sence of a general rule, 𝑑𝑓 can be reduced by one for each zero entry as a rough
heuristic.

3.2.2.3 Testing for vanishing conditional mutual information

A more general criterion for conditional independence stems from information
theory, a branch of mathematics that is concerned with quantifying information
and information flow. I will repeat the essential concepts of information theory
here to provide some degree of self-containedness.The first chapters of any intro-
ductory textbook of information theory will introduce the same concepts with
a lot more rigour and detail, also motivating the theory using a wealth of exam-
ples. For my purposes in this book, it satisfies to say that information theory will
provide us with the mathematical tools for modeling languages as variables, and
for defining the conditional independence tests that we will need to apply causal
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inference.The definitions as I state them in the following are adapted from Cover
& Thomas (2006).

The central concept of information theory is called entropy, and can be seen as
a measure of the expected amount of information provided by a single outcome
of (or alternatively, the uncertainty contained in not knowing the outcome of) a
random variable 𝑋 . In the discrete case (to which we will confine ourselves here),
the entropy 𝐻(𝑋) of a discrete variable 𝑋 with the set of possible outcomesΩ(𝑋)
is defined as

𝐻(𝑋) ∶= − ∑
𝑥∈Ω(𝑋)

𝑝(𝑥) log 𝑝(𝑥)

The entropy of a discrete variable 𝑋 can be seen as the average information
content of a single observation of that variable, or as the expected value of the self-
information 𝐼 (𝑥) ∶= − log 𝑝(𝑥) associatedwith an event {𝑋 = 𝑥}. Self-information
is also called surprisal because it measures the unexpectedness (or amount of
surprise) associated with the observation that 𝑋 has the value 𝑥 .

If we observe two information sources 𝑋 and 𝑌 at the same time, some of the
information we receive might coincide, which means that we cannot just add
up the amount of information received by both sources to quantify our overall
information. Instead, we generalize entropy to joint entropy 𝐻(𝑋 , 𝑌 ):

𝐻(𝑋 , 𝑌 ) = −∑
𝑥

∑
𝑦

𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

Theamount of informationwe receive twicewhen jointly observing two informa-
tion sources can be recast as the information that one variable 𝑌 provides about
the state of the other variable 𝑋 . This symmetric measure is called the mutual
information 𝐼 (𝑋 ; 𝑌 ):

𝐼 (𝑋 ; 𝑌 ) ∶= 𝐻(𝑋) + 𝐻(𝑌 ) − 𝐻(𝑋 , 𝑌 ) = ∑
𝑦

∑
𝑥

𝑝(𝑥, 𝑦) log ( 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦))

Returning to individual events, we can definemutual information as the expected
value of the pointwise mutual information 𝑝𝑚𝑖(𝑥; 𝑦) between two observations:

𝑝𝑚𝑖(𝑥; 𝑦) ∶= log ( 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦))

Pointwise mutual information is very useful for quantifying the strength of as-
sociations between pairs of variable values. In §4.4, I will get back to PMI as a
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standard measure of association between sounds in models of sound correspon-
dences.

Finally, we can measure the information which two variables 𝑋 and 𝑌 provide
about each other provided that the values of a set of certain other variables Z is
known. This is called the conditional mutual information of 𝑋 and 𝑌 given Z:

𝐼 (𝑋 ; 𝑌 |Z) ∶= ∑
z
𝑝(z)∑

𝑦
∑
𝑥

𝑝(𝑥, 𝑦|z) log ( 𝑝(𝑥, 𝑦|z)
𝑝(𝑥|z)𝑝(𝑦|z))

As Yeung (2008) demonstrates, it is easy to derive the following formula for com-
puting conditional mutual information from joint entropies:

𝐼 (𝑋 ; 𝑌 |Z) = 𝐻(𝑋 ,Z) + 𝐻(𝑌 ,Z) − 𝐻(𝑋 , 𝑌 ,Z) − 𝐻(Z)

The decisive property of mutual information for causal inference is that for joint
distributions that are faithful to some causal graph, it provides us with a neces-
sary and sufficient criterion for independence:

𝑋 ⟂⟂ 𝑌 ⇔ 𝐼(𝑋 ; 𝑌 ) = 0.

More importantly for my application, this also extends to conditional mutual
information, giving us the following characterization:

(𝑋 ⟂⟂ 𝑌 | 𝑍) ⇔ 𝐼(𝑋 ; 𝑌 |𝑍) = 0.

Intuitively, this means that two sets of variables are independent given a third
set of variables if and only if there is no information flow between the first two
sets that could not be mediated by variables from the third set.

Given this equivalence, an obvious idea for implementing a very general in-
dependence test now is to check for vanishing mutual information. The problem
with mutual information is, however, that it is hard to compute or estimate for
any interesting type of variable. This means that to exploit this characterization
of independence, we need to rely on other more easily computable measures
which in all relevant respects behave just like joint entropy.

Assume we have a set of 𝑛 discrete random variables 𝑋1, … , 𝑋𝑛 with the index
set [𝑛] ∶= {1, … , 𝑛}. Then, the criteria for a real-valued function ℎ on subsets of
[𝑛] to behave sufficiently like the joint entropy 𝐻 can be cast into three axioms
that are known as the elemental inequalities, and are quoted here as in Chaves
et al. (2014):
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For all 𝑆 ⊂ [𝑛]\{𝑖, 𝑗}, 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [𝑛]:
• ℎ([𝑛]\{𝑖}) ≤ ℎ([𝑛]) (monotonicity)

• ℎ(𝑆) + ℎ(𝑆 ∪ {𝑖, 𝑗}) ≤ ℎ(𝑆 ∪ {𝑖}) + ℎ(𝑆 ∪ {𝑗}) (sub-modularity)

• ℎ(∅) = 0
Intuitively, the monotonicity condition ensures that uncertainty never becomes
smaller if we consider a larger set of variables, and the sub-modularity condition
ensures that the conditional mutual information derived from the entropy-like
measure is always positive.

Together, these inequalities define an outer approximation to the region of
vectors in the space of set functions 𝑅𝑛 which define some entropy function on
all subsets of a set of 𝑛 discrete random variables. In less technical terms, this
means that any set function for which the elemental inequalities hold is close
enough in behaviour to entropy that we can use it to derive a consistent measure
of conditional mutual information. For more background on this, the reader is
referred to Yeung (2008: Ch. 14).

As we will see in Chapter 6, it is relatively straightforward to define measures
for which the elemental inequalities hold. Based on a function which can in this
regard be seen as a measure of entropy, this will make it possible to establish
consistent (if unreliable) independence tests between sets of languages.

3.2.3 The PC algorithm

The first feasible and complete causal inference algorithm based on conditional
independence tests is the PC algorithm as presented by Spirtes et al. (2000). This
algorithm is a basic building block for many more recent approaches, and is the
cornerstone for any understanding of constraint-based causal inference.

3.2.3.1 Preconditions and assumptions

The correctness and completeness of the PC algorithm depends on two very nat-
ural conditions, which are however only rarely met in applications to practical
problems, and have therefore been weakened for later algorithms which build on
the same basic principles.

The first prerequisite is the already mentioned causal sufficiency, i.e. we must
assume that there are no unobserved common causes which act as confounders.
If we try to circumvent this by operating with DAGs in which some nodes are
unobserved, we quickly run into the problem that there are many DAGs over
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both observed and latent variables for which no equivalent DAG over only the
observed variables exist, i.e. the Markov condition breaks down. The minimal
example of this is a causal graph of the shape 𝑋1 ←𝐿1 →𝑋2 ←𝐿2 →𝑋3, where
𝐿1 and 𝐿2 are unobserved. It is not possible to provide a DAG structure over 𝑋1,
𝑋2, and 𝑋3 which corresponds by d-separation to the conditional independence
constraints encoded in the larger structure. This will turn out to be a problem in
my application, because this pattern is one of themost frequent among languages
whenever two language families come into contact, e.g. in the configuration deu
← Germanic → fin ← Uralic → yrk, where Finnish (fin) is a Uralic language
which was influenced by Germanic, unlike Eastern Uralic languages like Nenets
(yrk).

The second prerequisite is faithfulness, which we already encountered in the
context of defining the correspondence between independence constraints and
the graphs they characterize. If the independence tests are too unreliable, and
produce a pattern of independence constraints that violates faithfulness, this can
be expected to mislead the algorithm, possibly to the point where it derives con-
tradictory constraints which do not correspond to any causal structure.

3.2.3.2 Basic version

The basic architecture of the PC algorithm consists of three phases. In the first
phase (Stage I), conditional independence tests are systematically performed to
establish an undirected causal skeleton. For each pair of variables 𝐴 and 𝐵, we
search for a minimal separating set 𝑆𝐴𝐵 with (𝐴 ⟂⟂ 𝐵 | 𝑆𝐴𝐵) (minimal in the sense
that (𝐴 ⟂⟂/ 𝐵 | 𝑆) for any 𝑆 ⊂ 𝑆𝐴𝐵). By doing so for every pair of variables, we
construct an undirected graph 𝐺 with {𝐴, 𝐵} ∈ 𝐸 whenever no such 𝑆𝐴𝐵 could
be found. The one observation which makes the PC algorithm tractable even for
dozens of variables is that we do not need to test all possible separating sets 𝑆𝐴𝐵
when attempting to separate 𝐴 and 𝐵. Instead, we can look for separating sets
by increasing size, first removing all links between variables which are uncondi-
tionally independent from an initially complete graph, then all links which are
independent given separating sets 𝑆𝐴𝐵 of size 1, and so on.

In addition, two nodes 𝑋𝑖 and 𝑋𝑗 are d-separated in a DAG 𝐺 if and only if
they are d-separated by either 𝑝𝑎(𝑋𝑖 , 𝐺) or 𝑝𝑎(𝑋𝑗 , 𝐺). Therefore, it suffices to
check whether two variables are independent given their neighbors in order to
check whether they are conditionally independent given any set of variables. As
the graph gets sparser by the removal of links, so does the number of neighbors
of 𝐴 and 𝐵 which the separating set 𝑆𝐴𝐵 must consist of, which tends to make
checking for all possible 𝑆𝐴𝐵 tractable even for large set sizes.
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In the next phase (Stage II), we check for the presence of v-structures. For
each triple 𝐴, 𝐵, 𝐶 ∈ 𝑉 with {𝐴, 𝐵} ∉ 𝐸, but {𝐴, 𝐶}, {𝐵, 𝐶} ∈ 𝐸 (i.e. each unshielded
triple), we add arrowheads pointing at 𝐶 (leading to a v-structure 𝐴 → 𝐶 ← 𝐵)
if 𝐶 ∉ 𝑆𝐴𝐵. This inference is justified by the relationship between graph pat-
terns and (in)dependence constraints established above. There is a v-structure
𝐴 → 𝐶 ← 𝐵 if and only if we have (𝐴 ⟂⟂ 𝐵), but (𝐴 ⟂⟂/ 𝐵 | 𝐶). (𝐴 ⟂⟂ 𝐵) is given be-
cause we have an unshielded triple, without a direct causal connection between
𝐴 and 𝐵. The absence of 𝐶 in the separating set 𝑆𝐴𝐵 implies that (𝐴 ⟂⟂/ 𝐵 | 𝐶),
because otherwise we would have found 𝑆′𝐴𝐵 = {𝐶} as a separating set before
encountering 𝑆𝐴𝐵. We infer the existence of a collider 𝐴 → 𝐶 ← 𝐵 because all
non-collider configurations would have led to (𝐴 ⟂⟂ 𝐵 | 𝐶).

If our independence tests were completely reliable (and this is what the basic
PC algorithm assumes), we can be sure that we have found exactly the correct v-
structures at Stage II. This allows us to orient many of the remaining undirected
edges (which were not part of any v-structure) in a third phase (Stage III), by re-
peatedly applying two simple criteria until no additional arrows can be inferred.
If one direction of a link would lead to a new v-structure which was not detected
at Stage II, we can add the arrow in the reverse direction (leading to a chain).
Moreover, if we assume acyclicity (as implied by the Causal Markov condition),
we can also orient any arrow where the reverse orientation would result in a cy-
cle 𝐴 → 𝐵1 → 𝐵2 → ⋯ → 𝐴. Enforcing the two principles can be achieved by
applying four arrow propagation rules, which I will not cite here because they
are subsumed by the ruleset of the more complex FCI algorithm in §3.2.4. Thanks
to a proof by Meek (1995), it has long been known that application of these four
rules until the fixed point (until they do not apply any more) suffices to arrive at
the CPDAG representing the Markov equivalence class of the true graph, i.e. con-
taining all the arrows which are common to the causal graphs in the class. This
even holds if we add background knowledge in the form of pre-directed arrows,
as one would do if e.g. the temporal order makes the directionality of causation
obvious.

The result computed by the PC algorithm is theminimal graph structurewhose
d-separation relationships correspond exactly to the conditional independencies
in the distribution, i.e. it will contain all those links which we must assume in
order to explain the conditional independence properties of the data, and not a
single additional link which would not be necessary. A procedure like the PC
algorithm therefore implements Occam’s razor, the scientific principle which re-
quires us to pick among adequate explanations the one for which we need to
make the smallest number of assumptions. The central role of Occam’s razor is
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A B

C D

Conditional
independence
relationships:
(𝐴 ⟂⟂ 𝐵 | 𝐷)

(𝐴 ⟂⟂ 𝐵 | 𝐶, 𝐷)
(𝐴 ⟂⟂ 𝐷 | 𝐵, 𝐶)

Stage I:

A

B

C

D

𝑆𝐴𝐵 = {𝐷}
𝑆𝐴𝐷 = {𝐵, 𝐶}
no further minimal
separating sets found

Stage II:

A

B

C

D

ACD: 𝐶 ∈ 𝑆𝐴𝐷 ,
no arrows
ACB: 𝐶 ∉ 𝑆𝐴𝐵 ,
i.e. 𝐴 → 𝐶 ← 𝐵

Stage III:

A

B

C

D

𝐶 → 𝐷, otherwise
new v-structure
𝐵 → 𝐷, otherwise
directed cycle

Figure 3.2: Illustrating the phases of the basic PC algorithm

reflected by the importance of avoiding overfitting in machine learning, where
it is typically possible to perfectly model the observable data using a complex
model with many parameters (e.g. a fully connected graph), but due to the more
difficult inference task, complex models are less likely to classify unseen exam-
ples well. It therefore makes sense for inference algorithms to infer the least com-
plex model which still fits the observable data, and this is what the PC algorithm
does for joint distributions of causally sufficient sets of variables.

3.2.3.3 More recent variants

The vanilla PC algorithm as I just presented it takes an unnecessary risk in se-
lecting the neighbors out of which separating set candidates are formed. If the
distribution is faithful to some DAG, (𝐴 ⟂⟂ 𝐵 | 𝑝𝑎(𝐴)) implies that 𝐴 and 𝐵 are
independent given a set of nodes lying on undirected paths between 𝐴 and 𝐵.
Conditioning on variables that are not on any connecting path will not cause
any blockage of information flow. Therefore, it suffices to include only nodes on
connecting paths in separating set candidates. Spirtes et al. (2000: 5.4.2.3) call this
modification the PC* algorithm, but advise shifting to the more exact separating
set candidate selection criterion only after the graph was already thinned out,
due to the high memory overload involved in maintaining a list of all connecting
paths between any pair of nodes. I will be using a similar idea in Chapter 6, where
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the shape of my data allows me to adapt an explicit flow criterion for prefiltering
the possible separating sets.

A major problem of the vanilla PC algorithm as well as its PC* variant is that
the results can vary widely depending on the order in which separating sets
are tried out, because the first one will be picked even though there might be
many separating sets of the same minimal size. The Conservative PC variant by
Ramsey et al. (2006) differs in not stopping as soon as a single sepset was found,
but checking whether the middle variable is present in all or no separating sets
of the current size. Unshielded triples where the relevant variable is contained
in some, but not all separating sets, are not oriented as colliders, but marked as
ambiguous, and prevented from taking part in the propagation rules. This rule
will prevent uncertain directionality information from being propagated, but will
often leave many edges unoriented.

The Stable PC algorithm by Colombo & Maathuis (2014) uses a majority rule
to resolve this problem. This variant decides whether to orient each triple as a
collider by counting the ratio of all minimal separating sets which contain 𝐵.
Both conservativity and the majority rule remove the order-dependence in the
presence of conflicting information, but the PC variants defined in this way still
tend to yield either unstable or uninformative results, and must be re-run with
different thresholds to detect the stable links.

3.2.4 The FCI algorithm

The FCI algorithm can be seen as a generalization of the PC algorithm to the
situation where hidden common causes for some of the observed variables might
exist. Such connections will be represented by the bidirected arrows (the edge set
𝐸↔) in ancestral graphs.

3.2.4.1 Basic version

The original version of the FCI (Fast Causal Inference) algorithm was given by
Spirtes et al. (2000) as a variant of the PC algorithm in the absence of causal suf-
ficiency. Much as the PC algorithm generates a CPDAG with the goal of approx-
imating the underlying true DAG up to Markov equivalence, the FCI algorithm
generates a PAG to represent the Markov equivalence class of the underlying
true ancestral graph.

The basic procedure of FCI remains to systematically find separating sets for
pairs of observed variables, thinning out a fully connected initial graph until we
arrive at a skeleton which only connects pairs of variables that cannot be made
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independent by conditioning on any combination of the other variables. What
makes the FCI algorithm much more complicated than the PC algorithm is that
due to the possible existence of latent variables, we cannot assume that we can
form a separating set for all pairs of m-separated variables from the neighbors in
the current skeleton. To see this, consider the following minimal example taken
from Spirtes et al. (2000: p.129).We have two pairs of variables𝐴, 𝐵 and𝐷, 𝐸, each
of which are dependent due to a hidden common cause. The only direct causal
influence on 𝐴 among observed variables is 𝐷 → 𝐴, and the only influence on
𝐸 is 𝐵 → 𝐸. Assume further that neither of the variables 𝐴, 𝐵, 𝐷, 𝐸 has a direct
causal influence on any other variable, observed or unobserved, and that there
is an additional causal pattern 𝐵 ← 𝐹 ← 𝐶 → 𝐻 → 𝐷. This pattern induces
a dependence (𝐴 ⟂⟂/ 𝐸), but the independence (𝐴 ⟂⟂ 𝐸 | {𝐵, 𝐶, 𝐷}). There is a
separating set which would allow us to delete the link, but this sets includes a
variable which is not directly adjacent to either 𝐴 and 𝐸 in the true graph.

The question which sets we need to test in order to ensure that a pair of vari-
ables 𝑋 and 𝑌 is not m-separated by any subset of the observed variables gives
rise to the notion of an inducing path. For two disjoint sets 𝐿 (latent variables)
and 𝑆 (selection variables) of nodes in an ancestral graph which do not contain 𝑋
or 𝑌 , an inducing path relative to ⟨𝐿, 𝑆⟩ is a path between 𝑋 and 𝑌 where every
intermediate node is either a collider or in 𝐿, and every collider on the path is
either in 𝑆 or an ancestor of 𝑋 or 𝑌 . A crucial result by Richardson & Spirtes
(2002) shows that 𝑋 and 𝑌 need to be connected in the true ancestral graph (are
not m-separated by 𝑍 ∪ 𝑆 for any 𝑍 disjoint from 𝐿 and 𝑆) if and only if there is
an inducing path from 𝑋 to 𝑌 relative to ⟨𝐿, 𝑆⟩.

For the systematic independence tests that are performed to arrive at a skele-
ton, the original version of the FCI algorithm relied on the notion of an inducing
path graph, which, however, turned out (Zhang 2006) to be less informative than
the variant based on ancestral graphs, which is the only one thatwill be presented
here.

After generating an initial skeleton just as in the first phase of the PC algo-
rithm, we cannot yet be sure that all the pairs of still connected variables are
actually m-connected in the true ancestral graph, because looking for separat-
ing sets only among the neighbors was sufficient to determine d-separation, but
does not reliably check for m-separation. Some additional edges might have to be
removed, and this is where the inducing path criterion comes in. If we partially
orient the links in the initial skeleton by detecting v-structures, many of the
paths in the skeleton between each pair of nodes 𝑋 and 𝑌 cannot correspond to
inducing paths in the underlying ancestral graph, whereas other might. It there-
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fore suffices to check whether (𝑋 ⟂⟂ 𝑌 | 𝑍) for each combination 𝑍 of nodes 𝑍𝑘
connected to 𝑋 by what might still represent an inducing path. If we manage to
break every possible inducing path between the observed variables 𝑋 and 𝑌 in
this way, the inducing path criterion allows us to remove the link between 𝑋 and
𝑌 . In practice, the criterion used to find candidates 𝑍𝑘 in the absence of latent
variables checks whether each triple on the path forms either an unshielded col-
lider or a triangle, which is the observable equivalent of an underlying inducing
path.

In order to infer the directionality of links in the final skeleton, FCI again relies
on the same basic procedure as the PC algorithm, after discarding the directional-
ity informationwhichwas used to determine the final skeleton. After redetermin-
ing the v-structures as starting points, propagation rules are repeatedly applied,
adding partial orientations to additional edges until no further changes occur.
The four propagation rules given by Spirtes et al. (2000) have the advantage of
still being quite intuitive, but this first version of FCI did not aim to achieve com-
pleteness in the sense that it did not necessarily output themost specific maximal
ancestral graphs.

Zhang (2008) closes this gap by developing and proving the completeness of a
rather complex set of orientation rules, giving rise to the Augmented FCI (AFCI)
algorithm. Since this is the version of the rules which is used in my implemen-
tation of RFCI (see below), I will provide each rule here, and give an informal
explanation of the intuition behind each of them, as well as their status in the
overall inference system. For a compact notation of the conditions under which
the rules apply, a star is used as an additional wildcard symbol to represent any
arrow end state. This is different from the circle in that the circle represents a
concrete state with the potential of being turned into an arrow or a line, whereas
the star does not correspond to an actual state, and is only used to keep rule
notations compact by matching any possible end symbol.

The first four rules ensure arrowhead completeness, i.e. they detect any arrow-
head that is present in all members of the Markov equivalence class, based on the
assumption that the inferred v-structures are correct. These rules are quite sim-
ilar to the orientation rules used by the PC algorithm, with one additional rule
that looks for discriminating paths which help to distinguish the configurations
𝐴 ↔ 𝐵 ↔ 𝐶 and 𝐴 ↔ 𝐵 → 𝐶 in some cases:

• ℛ1 ∶ orient unshielded 𝐴 ∗→𝐵 ◦—∗ 𝐶 as 𝐴 ∗→𝐵 → 𝐶
• ℛ2 ∶ orient 𝐴 ∗—◦𝐶 as 𝐴 ∗→𝐶 if 𝐴 → 𝐵 ∗→𝐶 or 𝐴 ∗→𝐵 → 𝐶
• ℛ3 ∶ orient 𝐷 ∗—◦ 𝐵 as 𝐷 ∗→𝐵 if there is a pair of variables 𝐴 and 𝐶 with
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(𝐴, 𝐶) ∉ 𝐸 which is in configurations 𝐴 ∗→𝐵←◦𝐶 and 𝐴 ∗—◦𝐷 ◦→𝐶
• ℛ4 ∶ on a discriminating path ⟨𝐷,… , 𝐴, 𝐵, 𝐶⟩, orient 𝐵 ∗—◦𝐶 as 𝐵 → 𝐶
if 𝐵 is in the separating set found for 𝐷 and 𝐶 , and add arrows to form
𝐴 ↔ 𝐵 ↔ 𝐶 otherwise

Intuitively, the first rule ℛ1 exploits the assumption that in the previous step of
the algorithm, we have found exactly the v-structures which are present in the
true ancestral graph. This means that we can exclude any arrow that would lead
to an additional collider, giving us additional chains.ℛ2 enforces the absence of
almost directed cycles in the ancestral graph.
ℛ3 provides a way to infer additional arrows within shielded triples. If in the

configuration it acts upon, we added an arrow from 𝐵 to𝐷, the second rule would
force us to assume 𝐴 ∗→𝐷 in order to avoid a cycle; in the unshielded triple
𝐴 ∗→𝐷 ◦—∗ 𝐶 , the requirement not to introduce additional v-structures would
force an additional arrow 𝐷 → 𝐶 , leading to an (almost) directed cycle 𝐵 →
𝐷 → 𝐶 ∗→𝐵, which cannot exist. Therefore, the arrow 𝐷 ∗→𝐵 is the only op-
tion in this configuration. This inference by contradiction cannot be emulated by
propagation rules.

The intuition behind ℛ4 is that discriminating paths show some of the be-
havior of unshielded triples, because on a discriminating path from 𝑋 to 𝑌 , the
colliders are exactly the nodes which do not occur in any m-separating set for 𝑋
and 𝑌 , and the non-colliders are the nodes which occur in every such set. This
property allows additional inferences of directionality, much in the same vein as
the initial detection of v-structures, but in the presence of bidirectional arcs.

The second block of rules serves to infer the existence of line ends, i.e. they
are the overall system’s way of detecting selection bias (undirected edges). If we
can safely assume that no selection bias is present, these rules will never apply,
and can thus safely be ignored:

• ℛ5 ∶ orient𝐴 ◦—◦ 𝐵 and all edges on an uncovered circle path ⟨𝐴, 𝐶, … , 𝐷, 𝐵⟩
where (𝐴, 𝐷) ∉ 𝐸 as well as (𝐵, 𝐶) ∉ 𝐸 as undirected ( — ), if such a path
exists

• ℛ6 ∶ orient 𝐵 ◦—∗ 𝐶 as 𝐵—∗ 𝐶 if there is an 𝐴 with 𝐴— 𝐵
• ℛ7 ∶ orient 𝐵 ◦—∗ 𝐶 as 𝐵—∗ 𝐶 if there is an 𝐴 with 𝐴—◦ 𝐵, and (𝐴, 𝐶) ∉ 𝐸

A path is called uncovered if every subsequence of length 3 on it forms an un-
shielded triple, i.e. every node is fixed as being either a collider or a non-collider.
ℛ5 looks for cycles consisting of unshielded triples, none of which was found to
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be a v-structure. If we started adding arrows in either direction,ℛ1 would force
us to continue adding arrows in the same direction until we arrive at a directed
cycle, violating the ancestral graph conditions.Therefore, the only option in such
a configuration are undirected links along the entire cycle. ℛ6 directly enforces
the ancestral graph property that no arrowhead may point into an undirected
edge. The purpose ofℛ7 is similar toℛ3 in that it covers a reasoning pattern by
contradiction that could not be covered by greedy propagation. The reasoning is
as follows: If contrary to the rule we assumed 𝐵←◦𝐶 , this would lead to a new v-
structure unless 𝐴— 𝐵, in which case we would again violate the ancestral graph
conditions.

The third block of rules allows us to turn many partially directed edges ◦→
into directed ones, and are therefore essential for the algorithm’s ability to dis-
tinguish bidirected from directed arcs in the ancestral graph. Two of these rules
rely on finding paths that are potentially directed, i.e. contain only links of the
shapes →, ◦→ , and ◦—◦ (with arrows in the direction of the path):

• ℛ8 ∶ orient 𝐴 ◦→𝐶 as 𝐴 → 𝐶 if 𝐴 → 𝐵 → 𝐶 or 𝐴—◦ 𝐵 → 𝐶
• ℛ9 ∶ orient𝐴 ◦→𝐶 as𝐴 → 𝐶 if there is an uncovered potentially directed
path from 𝐴 to 𝐶 whose second element 𝐵 ≠ 𝐶 is not adjacent to 𝐶

• ℛ10 ∶ orient 𝐴 ◦→𝐶 as 𝐴 → 𝐶 if there is a pattern 𝐵 → 𝐶 ← 𝐷, and
two uncovered potentially directed paths from 𝐴 to 𝐵 and from 𝐴 to 𝐷, the
second elements of which (possibly 𝐵 or 𝐷) do not coincide, and are not
adjacent

The rule ℛ8 is again a rule which enforces the non-existence of directed cycles,
exploiting the additional conditions imposed on amixed graph. More specifically,
this rule prevents the situation where an arrowhead points into an undirected
edge, a condition which was not enforced by ℛ2. The role of ℛ9 is very much
analogous to ℛ5, in that it looks for and prevents configurations which would
propagate into an almost directed cycle.ℛ10 encodes another instance of reason-
ing by contradiction. We know that the two potentially directed paths leading
away from 𝐴 form an unshielded non-collider pattern in 𝐴 (as a collider would
have been detected earlier), which implies that the edge from 𝐴 into at least one
of the paths is directed. If we had 𝐴↔𝐶 instead of 𝐴 → 𝐶 , this initial directed
link would propagate byℛ1 along the entire path, leading to an almost directed
cycle via 𝐵 → 𝐶 ← 𝐷 and 𝐴 → 𝐶 .
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While the soundness of these propagation rules is comparatively easy to see
given the explanations, their joint completeness in the sense that iterative appli-
cation of these rules will lead to a maximally informative partial ancestral graph
is highly non-trivial to prove, and requires large amounts of additional formal
machinery. For details on these matters, the reader is referred to the theorems
in, and especially the proofs in the appendix of, Zhang (2008).

3.2.4.2 More recent variants

The RFCI (Really Fast Causal Inference) algorithm by Colombo et al. (2012) re-
considers the necessity of the large number of conditional independence tests
which typically need to be performed by the FCI algorithm, and manages to re-
duce the number and order of conditional independence tests by exploiting some
additional properties of ancestral graphs. These changes make causal inference
without causal sufficiency feasible for dozens of variables, and also make it more
stable for small sample sizes, because tests of lower order have more statistical
power.

Where FCI tested all subsets of a set of possible m-separators to arrive at the
final skeleton, often leading to a combinatorial explosion of tests which needed
to be performed especially in sparse graphs, RFCI confines itself to testing only
very few sets beyond immediate neighbors, motivated by some important results.
For ease of exposition, I will ignore the existence of a set of selection variables
𝑆 in the original statements, because I will always have 𝑆 = {}, equivalent to
absence of selecton bias, in my application.

As the first important result, the unshielded triple rule states that a minimal
separating set 𝑍 for 𝑋𝑖 and 𝑋𝑘 contains exactly those ancestors 𝑋𝑗 of 𝑋𝑖 or 𝑋𝑘
where both pairs 𝑋𝑖 and 𝑋𝑗 and 𝑋𝑗 and 𝑋𝑘 remain dependent given 𝑍\{𝑋𝑗}. The
RFCI algorithm exploits this by checking all unshielded triples ⟨𝑋𝑖 , 𝑋𝑗 , 𝑋𝑘⟩ for
violations of this pattern, which are then repaired by finding a new minimal
separation set for the link (𝑋𝑖 —𝑋𝑗 or 𝑋𝑗 —𝑋𝑘) that was found to be inadequate,
and removing the offending link, possibly removing or creating new unshielded
triples.

Secondly, the discriminating path rule states that if a path ⟨𝑋𝑖 , … , 𝑋𝑙 , 𝑋𝑗 , 𝑋𝑘⟩ is
a discriminating path, and no pair of successive vertices on the path can be made
independent by conditioning on any subset of the separating set 𝑆𝑋𝑖𝑋𝑘 , then if
𝑋𝑗 ∈ 𝑆𝑋𝑖𝑋𝑘 , it is an ancestor and not a descendant of 𝑋𝑘 , and otherwise it is an
ancestor of neither 𝑋𝑙 or 𝑋𝑘 , nor a descendant of 𝑋𝑘 . This fact is used by the
RFCI algorithm on triangles of the form 𝑋𝑘 ←𝑋𝑙 ←◦𝑋𝑗 ◦—∗ 𝑋𝑘 , where on a mini-
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mal discriminating path ⟨𝑋𝑖 , … , 𝑋𝑙 , 𝑋𝑗 , 𝑋𝑘⟩, any edge between pairs of successive
vertices violating the rule can be removed. These two rules replace the more
straightforward check against all sets of vertices reachable by inducing paths
given by the standard FCI algorithm, and manage to lead to many of the edge
deletions performed by the refinement stage.

A slight decline in output informativity does persist, however, and can be ex-
pressed most concisely as a difference in conditions fulfilled by the PAGs re-
turned by FCI and the ones returned by RFCI. In both variants, absence of an
arc between 𝑋1 and 𝑋2 implies the existence of some separating set 𝑌 such that
(𝑋𝑖 ⟂⟂ 𝑋𝑗 | 𝑌 ), an arrowhead at 𝑋2 expresses that 𝑋2 is not an ancestor to 𝑋1 in
any MAG of the equivalence class, and a tail at 𝑋2 that 𝑋2 is an ancestor to 𝑋1
in every such MAG. The difference is in the interpretation of edge existence. In
the output of FCI, the existence of an edge between 𝑋1 and 𝑋2 implies that not
a single combination of other nodes in the graph constitutes a separating set for
𝑋1 and 𝑋2, whereas in the output of RFCI, this guarantee only extends to sep-
arating sets built from adjacents of one of the two nodes. An RFCI-PAG might
therefore have some spurious additional edges in comparison to the FCI-PAG,
which means that it must be interpreted in a more cautious way.

The resulting PAG is less informative than the output of FCI in some situations,
but as Colombo et al. (2012) show, all the causal information it returns is asymp-
totically correct (i.e. guaranteed to become correct given sufficient amounts of
data), and the output provably coincides with the output of FCI on a large class
of ancestral graphs. The definition of this class mirrors the difference in edge
semantics. The only situation where the RFCI-PAG can have an edge 𝑋𝑖 ∗—∗ 𝑋𝑗 in
addition to the FCI-PAG is when there is an inducing path from 𝑋𝑖 to 𝑋𝑗 relative
to the remaining adjacents of 𝑋𝑖 as well as another inducing path from 𝑋𝑗 to 𝑋𝑖
relative to the remaining adjacents of 𝑋𝑗 in the initial skeleton, but either there
is no inducing path from 𝑋𝑖 to 𝑋𝑗 relative to the possible d-separation nodes for
𝑋𝑖 , or no inducing path from 𝑋𝑗 to 𝑋𝑖 relative to the possible d-separation nodes
for 𝑋𝑗 in the refined skeleton of FCI. What this rather involved condition boils
down to is that the superfluous edges can only occur between variables that are
not connected by ancestry, and will not have line ends in the output of RFCI (i.e.
they will not be fully directed).

Since the RFCI algorithm appears to be alone in being able to infer PAGs for
dozens of variables without running into severe combinatorial problems, it is
the only existing algorithm which is directly applicable to the problem of con-
tact lexical flow inference. I will therefore use my own Java implementation of
RFCI to represent the state of the art in causal inference in the absence of causal
sufficiency.
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3.2.5 Alternative algorithms

While the PC algorithm and its derivatives are mathematically well-motivated
and rest on firm theoretical grounds, in practice they suffer from severe error
propagation issues if but a single conditional independence test yields an incor-
rect result. They are thus very unstable, a problem which can become so severe
that it is typically necessary to re-run these algorithms with different threshold
values for the conditional independence tests, on different variable orderings,
and under addition of some random noise, then aggregating the results of the
runs into a more stable picture.

However, as we will see in this section, there are good reasons to still focus
on constrained-based causal inference for lexical flow inference. To start with,
most algorithms in the vast landscape of existing approaches only work on con-
tinuous variables, or even only on variables that can be assumed to be normally
distributed. Limiting the discussion to approaches which might be relevant for
my application, I will only discuss two methods which could in principle be ap-
plied to the discrete case, but which I am not exploring any further in this book.

Themost important alternative to the constraint-based paradigm can be found
in the score-based approaches, which directly model the fit of candidate graphs
𝐺 to a data representation 𝐷 as an optimization problem for a score which can be
chosen to favor minimal graphs. Using a hill climber or a more advanced general
optimization algorithm, a candidate graph 𝐺 is iteratively modified slightly to
test whether the score is improving, until a local maximum is reached. In addition
to the advantage of not making any categorically wrong decisions, scores make it
possible to quantify the certainty about the result graph.The most popular score-
based approach is Greedy Equivalence Search (GES) as described by Chickering
(2002). The first phase of GES starts with the empty graph and greedily adds
the edges which improve the score most, until a maximum is reached. In the
second phase, some edges are removed again as long as this further improves
the score. The main disadvantage of score-based methods is the requirement of
causal sufficiency, making it impossible to treat hidden common causes correctly.
Also, the huge search space tends tomake thesemethods intractable if a structure
is to be built over more than a handful of variables.

A different class of causal inference algorithms proceeds by modeling some of
the imprecision in the conditional independence judgments based on Bayesian
principles. These algorithms are much more stable and less error-prone in prac-
tice, but do not have the advantage of theoretical guarantees such as proofs of
completeness. Recently, Claassen & Heskes (2012) have proposed to combine
both paradigms in order to arrive at a both theoretically sound and computa-
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tionally stable inference procedure. In their BCCD algorithm, a Bayesian score
is assigned to each input statement, quantifying the reliability of each piece of
knowledge. By processing the constraints in decreasing order of reliability, the
PC algorithm can be guided in such a way that errors due to bad conditional in-
dependence judgments happen late during the execution, therefore only causing
local errors which are not propagated much further. While the algorithm com-
pares favourably with FCI when unfaithful DAG approximations to MAGs are
inferred, the evaluation on test sets spanning only five variables indicates that
this approach will not scale to many variables either.
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The purpose of this chapter is to describe the infrastructure that was developed
to arrive at the linguistic dataset used for evaluation of the new algorithms I pro-
pose in Chapters 6 and 7. The first section describes the NorthEuraLex database,
which has been the major data collection project within the EVOLAEMP project,
and of which the author has been the coordinator and most active contributor.
Further sections describe how the orthographic realizations as extracted from
dictionaries were converted into a phonetic representation, the rather complex
way in which phonetic strings were aligned to yield similarity scores, and the
way in which cognate sets where inferred from these scores through clustering.

4.1 NorthEuraLex

4.1.1 The case for a new deep-coverage lexical database

Existing large-scale lexical databases only contain data for very few concepts.
While Swadesh lists of between 100 and 250 concepts exist for many languages,
there has so far not been an effort to collect such lists across many language
families. The singular cross-linguistic database with truly global coverage is the
ASJP database (Wichmann et al. 2016), which by now covers a list of 40 very
stable concepts across more than 5,000 languages.

Typically, algorithms for more advanced subtasks such as sound correspon-
dence extraction and automated reconstruction are tested and evaluated on data
covering a single language family.The best deep-coverage databases in a uniform
format are maintained by experts in the respective language families.

The only deep-coverage lexical database which covers a multitude of language
families is the intercontinental dictionary series (IDS) edited by Key & Comrie
(2015). This collection of dictionaries has the advantage of consisting of expert
contributions, but has not been extended for a long time, and remains at just
over 329 different languages from all over the world. The disadvantages of this
database are that it does not cover any larger geographical area which could be
used for contact models, that there are large gaps in lexical coverage even for
languages where more complete resources would be available, and that it does
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not include a uniform phonetic representation across all languages, tending to
favor orthographic forms instead.

Faced with this landscape, the members of the EVOLAEMP project made the
decision to develop a new deep-coverage database for a contiguous geographical
area that can be covered by collecting data from around a hundred languages.

4.1.2 Selecting the language sample

The linguistic interests of the author and the existence of previously collected
data suggested Northern Eurasia as a good linguistic area to cover comprehen-
sively. Within this area, the idea was to focus on a language family about which
much is known already, in order to be able to evaluate the results of automated
method against existing knowledge. Moreover, the language sample should be
small enough to make comprehensive coverage within the time frame of the
project feasible, while at the same time covering at least one family and all of
its relevant contact languages in neighboring families, in order to have good test
cases for models of lexical influence.

The feasibility constraint initially excluded Indo-European with its hundreds
of languages as the central focus, and most Siberian languages were not ideal due
to the sparseness of established etymological knowledge. As amiddle ground, the
Uralic language family quickly appeared as an ideal test case, because it features
comprehensive research which goes back in time at least as far as Indo-European
linguistics, yet is manageable in size at about 30 to 40 languages, depending on
how dialects are counted. The core of the language sample for NorthEuraLex is
therefore formed by a high coverage of Uralic languages.The 26 Uralic languages
for which data were collected represent essentially all the Uralic languages for
which published dictionaries or other comprehensive lexical resources are avail-
able, making it possible to retrieve almost-complete large word lists.

To extend this core of 26 languages in the direction of the desired sample size,
we added to the sample all the languages which are known to have been in inten-
sive contact with Uralic languages during their history. For the western branches
of Uralic, these include Germanic (German, Swedish, Norwegian) and Baltic (Lat-
vian and Lithuanian) languages. Contact with Slavic languages (especially Rus-
sian) has of course been particularly intense across all the minority languages of
Russia, but this also applies to the Saami and Finnic languages in theWest. There
are some very old loans from Proto-Iranian (including the words for ‘hammer’,
‘a hundred’) into Proto-Uralic, leading us to include Ossetian as the closest living
descendant of the Scythian languages. The central Uralic languages have been in
intensive contact with Turkic languages (Chuvash, Tatar, and Bashkir), whereas
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the Samoyedic languages to the east had some contacts with Siberian Turkic lan-
guages as well as Yeniseian languages. The interaction of Hungarian with many
of its neighbors adds a substantial number of additional languages (Slovak, Croat-
ian, Romanian, and Turkish) to the set.The inclusion of these languages provides
many interesting example cases for models of lexical contact.

To further expand the language sample, we decided to more extensively sam-
ple all the language families touched upon, by including at least one language
from each surviving branch of Indo-European and Turkic. Due to the familiar-
ity of many project members with several Indo-European languages, the Indo-
European sample was further extended by many national languages of Europe.
In order to have some data that can be used to develop statistical tests of long-
distance connections, and to enlarge the area of coverage eastwards, we decided
to also collect data from all the well-documented Paleosiberian languages, and
the other branches of the contested Altaic language family besides Turkic, i.e.
Mongolian and Tungusic, aswell as the evenmore contested Korean and Japanese.

To further increase variation in the data, and to close the gaps between lin-
guistic areas we already covered, we further included the four major Dravidian
languages as well as a substantial sample of the indigenous languages of the Cau-
casus (all three families). Finally, we also added well-documented isolates such
as Basque and Burushaski, as well as Arabic, Hebrew, and Mandarin Chinese,
languages of adjacent families with strong influences on many languages in the
sample. These languages had to be added in order to be able to model e.g. the
common Arabic influence on many languages of the Middle East as well as the
Caucasus, which would otherwise appear closely related due to the many loans
from Arabic.

Appendix A contains the resulting list of languages in the current version of
NorthEuraLex, along with their genetic affiliations according to Glottolog (Ham-
marström et al. 2015).

4.1.3 Selecting and defining the concepts

With the language sample in place, the next question for the design of a lexical
database is which concepts to cover. The only long concept list that currently
seems to be in use for massively cross-linguistic lexical databases is the IDS list,
which is based on Buck (1949), who uses a rather subjectively compiled list geared
towards Indo-European languages. Using the results of the WOLD project, Tad-
mor (2009) distills a more empirically motivated ranking of the 100 concepts least
susceptible to borrowing, the Leipzig-Jakarta list.
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In order to define a list of 1,000 basic concepts on a more empirical basis, we
decided to use existing digitalized dictionary data for 12 languages in order to
develop computational criteria that capture the notion of basicness, and to use
these criteria in order to rank a large list of concepts as to their appropriateness
of inclusion into Swadesh-type lists (“swadeshness”). In Dellert & Buch (2015),
we ranked about 6,000 concepts defined by sets of German glosses (for disam-
biguation) by a linear combination of two measures. The first measure quantifies
basicness in terms of average realization length, which is based on phoneme se-
quence length, but uses the information weighting which will be presented in
§4.3.1 to correct for language-specific effects of phoneme inventory size as well
as for the differences between stems and dictionary forms. The second measure
is the correlation of realization distances and overall language distances for a
sample of language pairs drawn with equal probability from language pairs of
all distances. Individual form distances were inferred by a variant of IWSA as
presented in §4.3.3, and the language distances were aggregated from the form
distances for 50 basic concepts by the dER measure (Jäger 2013). This local-global
distance correlation is high (in the vicinity of 0.9) for concepts where the form dis-
tances mirrored the overall language distances very well (e.g. bone), much lower
for concepts which disturb the fit to the phylogeny due to frequent loans (e.g.
bread), and near zero for words which were borrowed from a single language
across the globe (e.g. computer). The combined measure thus favors concepts
which are associated with short words in many languages, have similar realiza-
tions in related languages, and dissimilar realizations in unrelated languages.The
1,000 best concepts according to this initial ranking of 6,000 rather coarsely de-
fined concepts formed our starting point which we then refined into the final
concept list for NorthEuraLex.

Starting with the initial list, we began working on the languages for which lex-
ical resources are most sparse, and to which the concept list was therefore sup-
posed to be adapted with the goal of ensuring near-complete coverage even for
smaller minority languages. For this task, I systematically extracted the Russian
glosses from a series of Soviet school dictionaries that contain about 4,000 en-
tries in both directions, which were designed with the needs of native-language
school education in mind. These dictionaries, such as Menovščikov (1988) for
Siberian Yupik and Volodin & Halojmova (1989) for Itelmen, are sometimes the
only published lexical resource for the languages in question. Beyond a rather
small core vocabulary, these dictionaries often do not cover every concept that
a historical linguist might be interested in (such as louse or mother_in_law),
but much basic vocabulary that is essential to the native cultures such as dif-
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ferent types of sleighs and tents, or names of birds and fish. Intersecting these
specialized lists, a pan-Siberian list of region-specific, but very well-represented
concepts such as elk and eagle emerged, which were used to replace some of
the harder-to-find items from the automatically extracted concept list. After the
data were collected, these concepts also turned out to rank rather highly in our
“swadeshness” measure, because their realizations are short and phylogenetically
informative across the entire region.

The resulting list of 1,016 concepts can be separated into four main categories.
The list of nominal concepts (concepts which are predominantly expressed by
nouns across the sample) contains 480 items, including typical Swadesh concepts
such as 48 parts of the body, but also 34 North Eurasian animal names, and the
words for months and days of the week. The next largest category of 340 items is
subsumed as verbal concepts, because they are words describing actions which
are cross-linguistically most frequently expressed by verbs, with a few excep-
tions where the best equivalents are verbal suffixes. Typologically most difficult
to define is the list of 102 adjectival concepts, typically properties of objects, the
words for which behave similarly to nouns in some, and similarly to verbs in
other languages. Since we will typically only be interested in stems, we decided
to collect the equivalent lexical items independently of their category in each
target language. Finally, the list features 94 concepts which typically are covered
by words from closed classes. These include personal pronouns, some basic ad-
verbs (e.g. today and tomorrow), a few spatial adpositions (e.g. behind and
through), cardinal numbers, as well as a few conjunctions.

Many concepts needed to be disambiguated by additional annotations. For in-
stance, many languages (such as Spanish) have different basic words for front
teeth and back teeth, and our annotation for the concept tooth says that the
word for the human incisor will always be listed first. Also the concept uncle is
represented inmany languages by at least two different words with themeanings
brother_of_father and brother_of_mother, and our annotations define the
first one as the default choice in this situation. To disambiguate verbal meanings,
we often rely on prototypical arguments, as in blow [wind], melt [ice], and
knock [on wall]. Sometimes, we also add paraphrases, as for smoke, which we
annotate by [emit smoke] to distinguish it from ‘smoking cigarettes’.

Within the project, we produced translations of the concept list and the anno-
tations into the other two most important gloss languages, English and Russian.
While internally, German is the primary language of the database, for ease of ex-
position I will only quote the English translations in this book. The full English
version of the concept list with the annotations can be found in Appendix A.
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4.1.4 The data collection process

Some details of the data collection process are described in Dellert (2015). In the
two years since, data collection has progressed roughly in the same manner de-
scribed there for the Uralic part of the dataset. A summary of the procedure is
repeated here, with some changes that occurred during the following two years.

For the languages where several lexical resources were available, we did not
base our decision on the immediate accessibility of the respective gloss language,
but on a preference for work describing the standard language. For many Uralic
languages, this meant we did not rely on scientific dictionaries in German or En-
glish, but on Russian dictionaries of the standard languages. When starting to
work with a dictionary for one of the target languages, it was frequently nec-
essary as a first step to translate the concept list into the gloss language of that
dictionary. For languages other than English or Russian, we did not produce inde-
pendent versions of the concept list by translating the annotations, but relied on
the previously collected data for the gloss language instead.This was our strategy
for the following gloss languages: Norwegian (for theWestern Saami languages),
Swedish (for some information on Southern Saami), Finnish (for Inari Saami and
Skolt Saami), Estonian and Latvian (for Livonian), Hungarian (for some informa-
tion on Northern Mansi and Nganasan), French (for Breton), Japanese (for some
information on Ainu), and Chinese (for some information on Manchu).

Given the list of relevant lemmas in the gloss language, the first step of the data
retrieval process consisted in looking up all the lemmas in the gloss-to-target
language dictionary, and keeping track of possible disambiguating information
in a standardized format. Entries were usually typed in the original standardized
orthographies to ensure ease of automated retrieval, and compatibility across
different resources. For the second step, the lookup list produced in this way was
reverted, and alphabetically sorted in the target language. All target lemmaswere
then looked up in the target-to-gloss language dictionary, in order to retrieve as
much disambiguating information as possible on all the possibly relevant target
lexemes. Frequently, information from example sentences found in the dictionary
was included in annotations to the gloss-language translations in a standardized
way.

The final stage consiste in defining a lookup filter which stores the selection
decisions concerning the best equivalent of each concept in the target language.
The decisions were mainly based on automatically generated PDF summaries of
the lookup information in both directions (often about 500 pages of information
for the 1,016 concepts in our final list). Sometimes, this process was supported by
semi-automated translation of the gloss language into German. Often, we also
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relied on a variety of additional resources such as grammars, introductory text-
books, the Wikipedia in various languages, example sentences from the collabo-
rative database Tatoeba (Ho& Simon 2016), and Google phrase searches to clarify
the contexts in which certain words are used.

4.1.5 Difficulties and future development

The main complication during data collection was that many of the selection
choices were difficult to make based on the little information that is sometimes
included in dictionaries, which are often the only resources available for smaller
minority languages. While the preference for school dictionaries somewhat alle-
viated the situation, as only the most natural or basic translation for each gloss
language lemma is given, more precise information especially on verbal concepts
was found to be very difficult to obtain.

For these reasons, the version of NorthEuraLex which was used in the work
described here is a first nearly complete version which, however, unavoidably
still contains many errors. To further improve on data quality, much expert feed-
back will be necessary. Due to the design decision not to try to get word lists
directly from experts, it was possible to get initial coverage of a large geographic
region within little more than two years. Also, the uniform data collection pro-
cess with extensive protocols and information tracking makes it feasible to con-
tinually revise and improve decisions, which would be much harder to organize
if a different person were responsible for each language.

The data for the Uralic languages have been available for other researchers
since early 2015 (Dellert 2015). Larger parts of the data were also used in and are
distributed together with a paper (Dellert 2016a) that presents an early prototype
of the lexical flow inference algorithm I am developing and evaluating in this
book. As additional parts of the NorthEuraLex database reached pre-final stages,
they were first used within the project to evaluate new methods of sound corre-
spondence detection, linguistically motivated alignment, and cognate detection,
and version 0.9 was released in June 2017 for download via a web interface which
also provides capabilities for exploring the dataset in a browser.1 The data which
my work in this book builds on have thus been released under a CC-BY license
which allows other researchers to build on and expand on these data, and due to
its coverage of many language families central to historical linguistics, it is hoped
that NorthEuraLex will become one of the more widely used cross-linguistic lex-
ical databases.

1www.northeuralex.org

95

www.northeuralex.org


4 Wordlists, cognate sets, and test data

Supported by an intramural research fund at the University of Tübingen, as
well as by an MWK-RiSC grant from the Research Seed Capital program of the
state of Baden-Württemberg, I was able to start the second phase of NorthEura-
Lex in October 2018. During the coming two years, this funding will make it
possible to expand the database by many additional languages, and to add an
etymological annotation layer to some core families based on aggregating infor-
mation from various etymological dictionaries.The additional languages planned
for this round of expansion include 27 ancient and historical languages, as well
as 62 additional living languages, from the families already covered by version
0.9. The focus among ancient and historical languages will be on Indo-European,
with ten ancient languages (such as Gothic, Sanskrit, Hittite, and Tocharian) and
ten older variants of modern languages (e.g. Old English and Classical Arme-
nian). For the living languages, expansion focuses on Central Asia with 17 addi-
tional Turkic, five Mongolic, and seven Tungusic languages, the Caucasus with
ten further languages from the three indigenous families, as well as increasing
the density of coverage in Europe by 18 further living Indo-European languages
(e.g. West Frisian, Galician, and Upper Sorbian). Altogether, these expansions are
planned to increase the number of languages in NorthEuraLex from 107 to 196.

To improve the quality of the existing NorthEuraLex data beyond the state
achievable by extraction work from dictionaries, it will be vital to get into con-
tact with experts for the individual languages. This type of work is planned to be
carried out much more systematically after the current stage of expansion. Initial
contacts with expert communities have already been formed, and in addition, a
database of native speaker contacts is maintained by the author. In initial exper-
iments with native speakers of Hungarian, Italian, Ukrainian, and Japanese, the
ratio of clearly wrong selection entries which had to be revised based on their
feedback varied between 1.3% and 3.9%.

Regarding less well-documented minority languages, we have been able to get
at least an impression of data quality by getting feedback from a native speaker
of Udmurt, with whom the reviewing process for the entire concept list took just
under seven hours.This experiment resulted in improvements to just under 9% of
selection decisions in the initial non-expert version. Udmurt was a particularly
difficult case due to the outdatedness of the available dictionaries, and a lack of
example sentences in them. I would therefore expect the error rates for other
smaller languages to be somewhere between the range observed for the well-
documented languages, and the figure determined for Udmurt.

Some clear patterns emerged when comparing the errors made for the differ-
ent languages. Problems very much tend to cluster around some concepts which
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turned out to be particulary difficult to look up in dictionaries, such as the differ-
ence between hitting on a table and hitting a person, or the differences between
paws and claws. Even for the data which we will not manage to check with na-
tive speakers or experts, we will be able to flag the data for certain concepts as
more or less reliable, allowing users of the database to reduce the expected error
rate by excluding the data for such concepts when using our database. I estimate
that in this way, error rates of under 2% for a reduced list of 900 concepts will be
possible for users who need better data quality for their applications.

4.2 Transforming and encoding into IPA

With the collected lemmas for each concept and the selection filters, we now
have lists of parallel orthographic forms for more than 1,000 concepts across 107
languages. To make these strings of symbols comparable, it is necessary to con-
vert all the data into some uniform phonetic representation. For this purpose,
we made the decision to semi-automatically convert all the data into the rele-
vant subset of the International Phonetic Alphabet (IPA). The following sections
represent the reasons for as well as the advantages and difficulties associated
with this design decision, also discussing possible alternative options. The tech-
nical details behind the conversion process cannot be explained for every lan-
guage, but a general overview of the system architecture and its capabilities is
given. Also, I describe and motivate our approach to segmenting the resulting
IPA strings in such a way that the gappy bigram models as well as pointwise
mutual information models of sound correspondences that will be used later on
do not become too sparse.

4.2.1 Encoding cross-linguistic sound sequence data

Several encoding schemes for cross-linguistic lexicostatistical work have been
developed before. One of the earliest and still rather popular options was in-
troduced by Aharon Dolgopolsky in his seminal work (Dolgopol’skij 1964) on
possible deep ancestral relationships among the languages of Northern Eurasia.
The Dolgopolsky encoding only distinguishes eleven fundamental sound classes.
Vowels are not differentiated at all (class V), and consonants are almost exclu-
sively differentiated by place of articulation, where dental and alveolar affricates
are grouped together with velar obstruents (class K), and all sibilants fall in the
same class S, as do all liquids (class R). Nasals are differentiated into labial M and
other nasals N. The final two classes group together palatal approximants J and
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voiced labial fricatives W. While this encoding scheme is plausible for the purpose
of detecting possible deep signals in order to assess the support formacrofamilies,
it is much too coarse for computational tasks that are closer to mainstream his-
torical linguists. For instance, virtually all instances of sound change take place
within the same Dolgopolsky class. The encoding scheme is not designed for
capturing sound shifts, but for abstracting over them.

A slightly more fine-grained encoding scheme is the SCA sound-class model
used by the LingPy toolkit (List et al. 2018). The version described in List (2012b)
combines 28 sound classes with prosody classes, which are used to keep apart
sound correspondences in different prosodic positions. Unlike the Dolgopolsky
model, SCA distinguishes six vowel classes, and it adds five additional classes to
encode consonants. The remaining seven sound classes are reserved for encod-
ing different tones, indicating that this encoding scheme is especially suited for
encoding data from tonal languages at a high level of detail. On the other hand,
like in the Dolgopolsky model, there is only a single class for the sibilants, and no
voicing contrast is modeled for any phoneme pair. Vowel features beyond tone,
like length or nasalization, are not distinguished either, which makes the model
very uneven in its ability to represent data from different language families.

Among widespread phonetic encoding schemes, the next in order of granular-
ity is the ASJP encoding, which was developed as part of the Automated Simi-
larity Judgment Program (ASJP), and provides the unified encoding for the ASJP
database which was already discussed in Chapter 2. On the most elementary
level, this encoding distinguishes 41 sound classes, and uses both uppercase and
lowercase characters of the Latin alphabet as well as digits to represent them
as symbols. An extended version based on diacritics is also defined, but already
the basic version can express many relevant distinctions. Still, some distinctions
seem slightly idiosyncratic (cf. the introduction of a special class for the den-
tal nasal, which is only phonemically distinct from the alveolar nasal in very
few languages of the world), whereas other highly relevant distinctions are not
made (e.g. between retroflex and apical consonants). Still, the ASJP encoding has
the advantage of already being used by the largest massively cross-linguistic lex-
icostatistical database in existence, and has proven its usability for asking and
answering many interesting questions about phonetic universals. At the same
time, the ASJP encoding is seen by most linguists as still abstracting away over
too much possibly relevant detail, discarding information that might have been
valuable.

With the availability of larger lexical databases of higher quality, the general
trend in the field has been to move towards full IPA. The technical difficulties in
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handling IPA in not fully standardized Unicode encoding can be circumvented
via the X-SAMPA encoding by Wells (1995), and since all existing sound-class
models can easily be defined in terms of equivalence classes of IPA symbols, it
is trivial to project IPA-encoded data into more coarse-grained representations
as desired. This is the approach exemplified by LingPy. If given input data in
IPA, the system will estimate sound correspondences and compute alignments
on the level of SCA classes or any user-specified model, and then map the output
alignment back to the IPA input segments. This indirect approach helps to avoid
sparsity problems when inferring sound correspondences from short word lists,
but risks missing some correspondences, e.g. if [t] and [d] correspond to differ-
ent sounds in a related language, as is the case for the language pair English and
German. In contrast, the system I will describe in the following sections works
on an only slightly reduced version of IPA internally. This makes it unnecessary
to distinguish internal phonetic representations from display and input formats,
but comes at the cost of higher minimum requirements in terms of the number
of cognate pairs if the goal is to infer good correspondences. However phonetic
encoding is handled internally, IPA support has the advantage of allowing the
user to work at the customary level of detail, and in a well-established represen-
tation format. Therefore, fully fledged IPA input and output support will lead to
much higher acceptance in the wider linguistic community.

4.2.2 Implementing orthography-to-IPA transducers

Faced with the problem of transcribing thousands of lexemes from dozens of un-
familiar languages into IPA, it seemed prudent to not perform the IPA conversion
manually, but try to automatize it as much as possible in order to be able to revise
misconceptions later on, without having to manually retranscribe thousands of
lexemes after each incremental change.

While the majority of modern orthographies feature a reasonably straightfor-
ward grapheme-to-phoneme correspondence, there are some historically grown
orthographies, especially of Western European languages, which make the task
of automated transcription into IPA virtually impossible. This especially applies
to English, Danish, Irish, and to a certain extent French. In these languages,
phonology has changed considerably since the time their orthographies devel-
oped, and there have not beenmany reforms to reflect these changes. For all other
languages (especially most Eastern European national languages, for which the
current written standards materialized only in the nineteenth century), it proved
feasible to derive an acceptable approximation to the standard pronunciation
from the orthography, or a standard transcription.

99



4 Wordlists, cognate sets, and test data

Still, in most languages there are some phenomena which require much famil-
iarity with the language to transcribe correctly. For instance, while the pronun-
ciation of Standard German word forms is largely predictable from the orthogra-
phy, there are many recent loans, especially from French and English, which are
pronounced rather closely to the original forms. A second issuewith German and
other Germanic languages is that certain frequently recurring morphemes (such
as verbal prefixes) deviate from the usual rules of pronunciation. For instance,
the German verbal prefix ver- is always syllabified separately, and the r never
becomes the onset of the next syllable. For instance, the correct pronunciation
of verachten ‘to despise’ is [fɛɐˈʔaχtn], not [fɛˈʀaχtn]. But to teach an automated
system to distinguish this case from, for instance, the pronunciation [veˈʀanda]
of Veranda is a very complex task, which our current version of automated con-
version from German orthography to IPA manages only imperfectly. To make
it possible to still get correct output whenever we notice such errors in the IPA
transcriptions for the NorthEuraLex data, our data format allows to override au-
tomated conversion by explicitly specifiying the correct IPA for any lexeme. For
IPA processing, we internally use the X-SAMPA encoding, which is then con-
verted to the Unicode characters for further processing and display.

Even for languages which have a recent and standardized orthography, auto-
mated conversion can be challenging.This especially applies to languages where
some relevant phonemic distinctions are not written in the usual orthography,
because there is no ambiguity for a speaker of the language. As a case in point,
consider the non-distinctiveness of the phonemes [eː] and [æː] in Latvian, both
of which are written ē. This type of problem can even affect new orthographies
recently designed by linguists for previously unwritten languages. To maintain
some amount of consistency with the orthography of the state language, there
is a tendency to incompletely represent some aspects of the phonologies of mi-
nority languages. For instance, Cyrillic-based orthographies routinely follow the
Russian model of encoding palatalization by two separate series of palatalizing
and non-palatalizing vowels. At the same time, features irrelevant to Russian
such as vowel length and certain distinctions in vowel quality are often not rep-
resented. While relying on the grapheme inventory of Russian as much as pos-
sible might help the practical usage of the new orthographies by native speak-
ers, it detracts from the value of official dictionaries and written sources to the
linguist. Still, instead of relying on the older, phonologically often very precise
transcribed dictionaries, in the interest of cross-source comparability and acces-
sibility for possible corrections by native speakers, we opted to operate on the
official orthographies in all but a few cases (Ainu, Burushaski), enhancing the lex-
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ical data with transcriptions where necessary (Persian, Pashto, Korean, Japanese,
Chinese).

Another challenge in designing orthography-to-IPA transducers is the neces-
sity to abstract over dialectal distinctions, oftenmaintaining the fiction of a single
“received pronunciation” which then represents the entire language. If IPA tran-
scriptions are included in a good dictionary, they are always abstractions tuned to
some picture of the ideal standard language, sometimes consciously avoiding to
over-commit to a specific pronunciation. For instance, both the English and Ger-
man r-sound are routinely represented as [r] in dictionaries, although in reality,
this realization is very uncommon in both languages. The symbol [r] merely ab-
stracts away from dialectal variation within English (usually between [ɾ] and [ɻ])
and German (usually between [ʁ] and [ʀ]). In reality, historical linguists quite fre-
quently take dialectal variation into account when reconstructing sound changes.
Still, in the absence of comprehensive dialectal data, it seemed most feasible to
take the phonological descriptions in introductory literature about the various
languages at face value, and to implement simple transducers as first approxi-
mations, which can then be further improved based on native speaker feedback,
more specialized literature, or analyzing recorded speech.

To obtain a preliminary solution in an acceptable timeframe, we relied on a
very simple transducer formalism for the first experiments on a smaller num-
ber of languages. This architecture subsequently proved flexible enough to allow
other project members to implement reasonably well-performing transducers for
all of the NorthEuraLex languages.

Our transducer formalism essentially consists of ordered lists of replacement
rules of the general form 𝛼𝛽𝛾 → 𝛼𝛽′𝛾 . Each transducer file contains a list of
such rules which defines a single pass through the string, where the rules are
tried in the order they are given. Given a situation 𝛼 • 𝛽𝛾𝛿 during the traversal,
we deterministically only apply the first rule in the order which matches a prefix
of the pattern 𝛽𝛾𝛿 . This means that if a rule 𝛽 → 𝛽′ comes before the rule
𝛽𝛾 → 𝛽∗𝛾 in the order, the latter rule will never be applied, because the first
one is deterministically chosen first. Crucially, 𝛼 and 𝛽 are not contexts in the
classical sense, because they are processed and merely copied over during the
rule application, leaving the string traversal in the position 𝛼𝛽𝛾𝛿•, i.e. after the
entire pattern.

Using several passes defined in separate transducer files, even this simple for-
malism proved sufficient and quite usable for the task at hand. The only addi-
tional capacity we introduced for convenience was the possibility to define sym-
bol classes in order to express multiple rules concisely. For instance, to enforce a
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typologically very common change such as [s]→ [z] between vowels, it is possi-
ble to define a symbol class [vow] and then write rules like [vow]s[vow]→ [.]z[.],
where [.] is a notation for copying the corresponding class on the left-hand side
over to the right-hand side. This abstraction over simple replacement rules was
the only additional feature we found necessary.

The simple nature of the formalism made a very naive prototype implementa-
tion using Java string operations performant enough to perform the entire work
described in this book. Recently, Thora Daneyko has written a compiler which
turns cascades of transducer files into finite-state transducers compatible with
the HFST toolkit (Lindén et al. 2011). This promises to lead to better performance
especially on longer strings, and will be a lot more accessible to other researchers
who might want to use our transducers as well. A release of the HFST versions
of our orthography-to-IPA converters is planned to accompany the next major
version of NorthEuraLex.

4.2.3 Tokenizing into reduced IPA

Given IPA representations of all the NorthEuraLex data, the next step in my
pipeline computes string distances for cognate detection. Many considerations
come into play in this part of the architecture, mostly revolving around inference
of a good general phoneme distance matrix and the estimation of language pair-
specific sound correspondences to adapt this general distance matrix in every
concrete case.

Any model which attempts to estimate segment similarity will quickly run
into problems if too many parameters are to be estimated from too little data.
For many language pairs where we would like to estimate correspondences (e.g.
members of the same family), we often need to get by on little more than a hun-
dred cognate pairs. List (2012a) has tackled this problem by internally reducing
IPA (which his LingPy system accepts as input) to the 28 SCA equivalence classes,
over which it is easy to estimate sound correspondences even based on only 100
or 200 cognate pairs.

If our goal is to derive full IPA correspondences based on the same amount
of data, we quickly run into problems. For estimating sound correspondences, it
turned out necessary to reduce the number of IPA segments a little. While coar-
ticulation and other often combinable diacritics carry the number of theoretically
valid IPA segments well into the thousands, there is a core of relevant segments
which are encoded by a single symbol in IPA, and which can be used as a guide-
line to wriggle the number of IPA segments we need to consider down to a much
more manageable 120. To get a sense of what would be needed to represent all

102



4.2 Transforming and encoding into IPA

languages of the world equally well, Ladefoged &Maddieson (1996) estimate that
more than 200 vowels and 600 consonants are actually in use.

The key decision to keep things manageable was to only use IPA symbols
which actually occur in the NorthEuraLex data, which excluded click sounds and
some further very infrequent types of consonants. However, due to the presence
of languages both with one of the richest consonant inventories (Abkhaz) and
the highest number of vowels (French) within the sample, this measure alone is
not enough to reduce the number of symbols below around 300. This very rich
inventory includes many ejectives, large numbers of diphthongs and nasal vow-
els, and a full array of palatalized and labialized stops, plus a few pharyngealized
ones (from Arabic).

As a solution to this combinatorial problem, I decided to treat coarticulatory
features such as labialization and nasalization as separate segments following
the base phoneme. Apart from the obvious benefit that this brings down the
number of symbols into the feasible range, this decision can also be justified
from a linguistic perspective. Frequently, nasal vowels correspond to subsequent
nasal consonants in cognates, because the nasalization of vowels before nasals is
a quite freqent phenomenon (cf. Italian anno [anːo] and French an [ɑ̃] ‘year’). In
an analogous way (though to a lesser degree), high front vowels are associated
with palatalization, and rounded vowels with labialization. Also, support for the
most frequently occurring affricates was added, at the cost of not representing
any other double articulations.

The resulting list of 107 IPA segments is given in the following table, together
with their phonological definition and the closest neighbors according to the
global segment distance matrix whose inference will be described in the follow-
ing section. Upon inspection, the reader will see that the list of segments is quite
expressive, and can represent many historically relevant distinctions with ease.

My architecture includes code for tokenizing arbitrary IPA strings into these
segments, which are internally handed as Unicode strings. During tokenization,
the length symbol is replaced by a repetition of the preceding segment, because
support for long vowels and diphthongs would again have increased the number
of segments beyond the feasible range, and many sound changes between diph-
thongs and vowels can easily be described in a two-segment model. Also, it is
vital for the implementation of various algorithms that the full phonetic features
of each segment be retrievable from the segment in isolation.
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_ internal word boundary ɑ
- gap symbol (models deletion and insertion) ˀ ʔ ˠ ʼ ˤ ʕ ʰ ʐ ʲ ɤ ʜ
m bilabial nasal ̃
ɱ labiodental nasal ̃ n
n alveolar or dental nasal ɲ ̃ ɳ ŋ ɱ
ɳ retroflex nasal n
ɲ palatal nasal n
ŋ velar nasal ̃ n ɡ
p voiceless bilabial stop p͡f b β
b voiced bilabial stop β p w ʋ
t voiceless alveolar or dental stop ʈ c θ ð d t͡ɕ t͡s
d voiced alveolar or dental stop ɟ ð ɖ θ t
ʈ voiceless retroflex stop ɖ t
ɖ voiced retroflex stop ʈ d ɻ
c voiceless palatal stop t͡ɕ t͡ʃ t ʃ k t͡s ç t͡ʂ
ɟ voiced palatal stop d ɡ d͡ʒ j -
k voiceless velar stop c͡ç ç q ɢ x ɡ χ
ɡ voiced velar stop ɣ ɦ ɢ ʕ ɟ͡ʝ ç d͡z h ʁ ɟ k ŋ ħ
q voiceless uvular stop q͡χ χ ɣ ɢ x k ʁ
ɢ voiced uvular stop ħ ɡ q k x
ʔ glottal stop ʕ ʲ - i ɒ
t͡s voiceless alveolar sibilant affricate t͡ʃ θ t͡ɕ s z
d͡z voiced alveolar sibilant affricate z - ɡ d͡ʒ
t͡ʃ voiceless palato-alveolar sibilant affricate t͡ʂ t͡ɕ t͡s θ c ɕ ʃ d͡ʒ
d͡ʒ voiced palato-alveolar sibilant affricate ʒ d͡ʑ j t͡ʃ z ɣ d͡z ɟ d
t͡ʂ voiceless retroflex sibilant affricate t͡ʃ ʃ c
t͡ɕ voiceless alveolo-palatal sibilant affricate t͡ʃ c t͡s ʃ ɕ t s
d͡ʑ voiced alveolo-palatal sibilant affricate d͡ʒ j ʒ
p͡f voiceless labiodental affricate p
c͡ç voiceless palatal affricate k
ɟ͡ʝ voiced palatal affricate ɡ
q͡χ voiceless uvular affricate q χ ʁ
s voiceless alveolar sibilant θ ɕ ʃ t͡s z ʂ
z voiced alveolar sibilant ʑ ʒ d͡z ð t͡s s d͡ʒ
ʃ voiceless palato-alveolar sibilant fricative ʂ ɕ t͡ɕ t͡ʃ s ʒ t͡ʂ θ
ʒ voiced palato-alveolar sibilant fricative d͡ʒ z d͡ʑ ʃ ɣ ʑ j r
ʂ voiceless retroflex sibilant fricative ʃ s
ʐ voiced retroflex sibilant fricative -
ɕ voiceless alveolo-palatal sibilant fricative ʃ s t͡ʃ t͡ɕ ʲ
ʑ voiced alveolo-palatal sibilant fricative z ʲ
ɸ voiceless bilabial fricative f
β voiced bilabial fricative v w b ʋ ʷ

Figure 4.1: The IPA sound classes used for my data, with ranking of
neighbors showing the two highest degrees of associatedness. (Part 1)
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f voiceless labiodental fricative ɸ v
v voiced labiodental fricative ʋ β w ʷ f ʉ
ʋ labiodental approximant v w β b
θ voiceless dental non-sibilant fricative t͡s t͡ʃ s t d ʃ
ð voiced dental fricative d z t ɖ
ɹ alveolar approximant r ɾ
ɻ retroflex approximant
ç voiceless palatal fricative k x ɡ -
ʝ voiced palatal fricative j -
j voiced palatal approximant ʝ d͡ʑ d͡ʒ ʲ ɪ ʒ i
x voiceless velar fricative χ q h ħ ç ɢ k ˀ ɣ
ɣ voiced velar fricative ɡ q ʁ ʒ χ ɦ d͡ʒ
χ voiceless uvular fricative x ħ q h - ʁ ɣ k
ʁ voiced uvular fricative ɣ r ʀ ɾ q ɐ χ ɡ q͡χ
ħ voiceless pharyngeal fricative h χ ɢ x ʒ
ʕ voiced pharyngeal approximant ʔ - ɡ
h voiceless glottal transition ɦ ħ x χ ɡ ʰ ç -
ɦ breathy-voiced glottal transition h ɡ ʰ ɣ
ɾ alveolar flap r ʁ ʀ ɹ
ɽ retroflex flap r
r alveolar trill ɹ ʀ ɾ ʁ ɜ ɽ ʒ ɐ
ʀ uvular trill r ʁ ɾ
ʜ voiceless epiglottal trill a
t͡ɬ voiceless alveolar lateral affricate -
ɬ voiceless alveolar lateral fricative l ʎ ɫ -
ɮ voiced alveolar lateral fricative l
l alveolar lateral approximant ʎ ɫ ɬ ɮ ɭ
ɭ retroflex lateral approximant l
ʎ palatal lateral approximant l ɬ ɫ ʲ ɮ
w voiced labio-velar approximant β v ʋ ɫ ʉ u ʊ ˠ ɥ b ʏ ʷ χ o
ɥ labialized palatal approximant u y w ʏ
ɫ velarized alveolar lateral approximant l ʎ w ɬ
i high front unrounded vowel ɘ ɪ ʲ ɨ ɯ e ʔ j - ɤ ɛ
y high front rounded vowel ʏ ø œ ʉ ɵ ɯ u ɘ ʊ ɥ o
ɪ near-high near-front unrounded vowel i e ɛ ʏ œ j ʲ ɨ ə ø ɵ -
ʏ near-high near-front rounded vowel y ø ɵ ʉ æ ɪ ʊ ɥ œ ə
ɨ high central unrounded vowel ɤ i œ ɪ - u ə
ʉ high central rounded vowel y ø u ɵ ʊ œ w ʏ o ɒ β v
ʊ near-high near-back rounded vowel u ʉ ɵ y ø œ ʏ w ɐ ɔ o ɑ ʌ -
ɯ high back unrounded vowel ɤ y ə ø ɘ - u i ɒ e
u high back rounded vowel ʉ ʊ ɵ y o ɥ ɤ w ɯ ø ʌ œ β

Figure 4.1: The IPA sound classes used for my data, with ranking of
neighbors showing the two highest degrees of associatedness. (Part 2)
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e high-mid front unrounded vowel ɛ ɪ ɘ ə æ i ɯ ʔ ʲ
ø high-mid front rounded vowel œ y ʉ ʏ ɯ ʊ o ɘ ɵ ɪ u
ɘ high-mid central unrounded vowel i e y ɛ ɯ ø - œ
ɵ high-mid central rounded vowel œ y ʉ ʏ u ʊ ɔ ɛ ø ɪ
ɤ high-mid back unrounded vowel ɯ ə ɨ ɔ u - ɛ o
o high-mid back rounded vowel ɔ ʷ u ø ɒ ɐ ʉ ə ʊ w ˠ ʌ y œ ɤ
ə mid central unrounded vowel ʌ ɤ ɯ e a o - ɔ ɪ ˠ ɐ ɛ ʏ ɑ
ɛ low-mid front unrounded vowel e ɪ ɘ æ ɜ ɵ ɐ ɤ i ə
œ low-mid front rounded vowel ø y ɵ ʉ ʊ ɨ ɪ ɘ ɔ o ʏ u
ɜ low-mid central unrounded vowel r ɛ
ʌ low-mid back unrounded vowel ə ɔ a u o ʊ
ɔ low-mid back rounded vowel o ɐ ʌ ɵ ɤ ɒ ə ʊ œ ʷ
æ near-low front unrounded vowel ɑ ʏ ɛ a e ʕ ɒ ɐ
ɐ near-open central unrounded vowel ɔ ɑ a o ʊ ʁ - ɛ æ
a low front unrounded vowel ɒ ɑ ʌ ɐ ʕ ʜ æ ə ʔ ʰ
ɑ low back unrounded vowel ɒ ɐ æ a _ ʊ ɘ ə
ɒ low back rounded vowel a ɑ o ɔ ʉ æ ʔ
ʰ aspiration - ʼ h
ʼ ejectivity - ʰ ˀ
ʲ palatalizion ʔ ʎ i j - ɕ ʑ ɪ
ʷ labialization o v ɔ - w
ˀ laryngealization - ʼ
ˠ velarization - w o
ˤ pharyngealization -
̃ nasalization ŋ n m ɱ -

Figure 4.1: The IPA sound classes used for my data, with ranking of
neighbors showing the two highest degrees of associatedness. (Part 3)

4.3 Information-Weighted Sequence Alignment (IWSA)

In this section, I present a new variant of sequence alignment for aligning and
quantifying the similarity of phonetic representations. In a nutshell, the crucial
innovation is that it attempts to take varying information density in lemmas
into account. This measure of information content serves a double purpose in
our approach: It is used as a generalized approach to replace manual stemming
(making it possible to directly use dictionary forms), and for normalizing word
length in order to correct for effects of phoneme inventory size.

4.3.1 The case for information weighting

Assume we are faced with the task of assessing the closeness of the English word
to freeze and its German equivalent gefrieren. The architecture described so far
is able to convert these orthographic forms into the plausible IPA representa-
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tions [friiz] and [ɡəfʁiiʁən]. The normalized Levenshtein distance between these
forms is 0.667, which is clearly a little high for a pair of cognates from closely
related languages. Assuming that we use alignment weights, and that our global
distance matrix additionally tells us that [r] and [ʁ] are a good fit, and (optimisti-
cally) that sound correspondence detection will have determined that English
[z] clearly coincides with German [ʁ] in some contexts, we would still be left
with a normalized distance of at least 0.444, i.e. only slightly better than, say, the
distance between sink [sɪŋk] and song [sɔŋ].

The reason for our problems is, of course, that there is some additional mate-
rial in the German form which would traditionally need to be stripped in order
to only map the core portion, the stem frier-, to freeze. If we cannot extract the
stems manually because it would require too much time, or because too little
is known about the languages in question (which is frequently the case for lan-
guages where automated methods might yield new results), is there a mathemat-
ical model that can tell us which bits to ignore, and then a way to incorporate
this information into the sequence distance computation?

4.3.2 Gappy trigram models

An important intuition for developing a mathematical model of ignorability is
that the irrelevant material will be unsurprising. For instance, the infinitive end-
ing -en is present in virtually every German verb, so seeing it at the end of a
verbal lexeme is completely unsurprising. Put differently, using the information-
theoretic notion of surprise as high information, we will generally find that the
low-information segments can more justifiably be ignored when comparing lex-
ical material across languages. The easiest way to model information content
mathematically builds on the probability of seeing the item in question given
the knowledge we already have. In phonetic strings, the knowledge we have
are the surrounding segments. If the probability of seeing a segment given the
neighboring segments is very high, this implies low information content. These
considerations lead us to the use of (gappy) n-gram models for each language
and major word class (nouns, verbs, adjectives, and others).

Formally, if wewrite 𝑐𝑎𝑏𝑐 , 𝑐𝑎𝑏𝑋 , 𝑐𝑋𝑏𝑐 , 𝑐𝑎𝑋𝑐 for the trigram and extended bigram
counts, we can define the information content of the segment 𝑐 in its context
𝑎𝑏𝑐𝑑𝑒 as

𝐼 (𝑎𝑏𝑐𝑑𝑒) ∶= 1 −max { 𝑐𝑎𝑏𝑐𝑐𝑎𝑏𝑋
, 𝑐𝑏𝑐𝑑𝑐𝑏𝑋𝑑

, 𝑐𝑐𝑑𝑒𝑐𝑋𝑑𝑒
}

In words, we use the minimum of the probabilities of not seeing 𝑐 given the
two segments before, the two segments after, and the immediate neighbors of 𝑐.
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To derive information content values for peripheral segments of the string, we
add the word boundary symbol # twice before the beginning and after the end
of each string, both for deriving the trigram and extended bigram counts and
for defining the positions 𝑎−1, 𝑎−0, 𝑎𝑘+1, and 𝑎𝑘+2 in a string 𝑎 of length 𝑘. For
instance, in German verbs, we receive 𝐼 ([hən##]) = 0.012, correctly capturing the
aforementioned pattern of German verbs ending with the infinitive ending -en.

According to this definition, morphological material beyond the stem will
typically have very low information content, because the inflection of citation
forms (e.g. the infinitive ending verbs) will largely be predictable from the word
class. For instance, expressing the relative information content using shades from
white to black, the information content of the segments in the German word
vergehen ‘to pass’ is [fɛɐɡeeən], i.e. the infinitive ending disappears completely
(as has happened diachronically to the English cognate forgo), and the verbal
prefix ver- only contains a fraction of the information in the root geh-, where
the information about the long vowel amounts to little more than a single seg-
ment due to the German dichotomy of short [ɛ] vs. long [eː] (see Table 4.1 for
exact numbers). Interestingly, this definition of information content models af-
fixal and root-template morphology equally well. For Arabic nabaḥa ‘to bark’, we
get the desired result [nabaħa] where the vowels contain a lot less information
that would be relevant for cross-language comparison. Our simple information
model is thus powerful enough even to detect the three-consonant root structure
of Semitic languages.

Table 4.1: Information content in German vergehen ‘to pass’ and Arabic
nabaḥa ‘to bark’

[f] [ɛ] [ɐ] [ɡ] [e] [e] [ə] [n]
0.597 0.228 0.144 0.762 0.615 0.615 0.076 0.012

[n] [a] [b] [a] [ħ] [a]
0.944 0.231 0.878 0.269 0.930 0.176

4.3.3 Implementing IWSA

Given a language-specific information content model which assigns an informa-
tion content value to every segment in our tokenized IPA strings, the next ques-
tion to answer is how we can make the information content inform our pairwise
comparisons. The solution I adopted is to use information content in a modified
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edit distance measure which is computed by aligning two strings 𝑎 (length 𝑛)
and 𝑏 (length 𝑚). To compute this distance measure, the dynamic programming
table is filled by the recursion

𝑀(𝑖, 𝑗) ∶= 𝑀(𝑖 − 1, 𝑗 − 1) + 𝑑(𝑎𝑖 , 𝑏𝑗) ⋅ 𝑠(𝑎𝑖 , 𝑏𝑗),

where 𝑑(𝑎𝑖 , 𝑏𝑗) is the segment distance inferred from the data (as described in
the next section), and the combined information content 𝑠(𝑎𝑖 , 𝑏𝑗) is defined as
the quadratic mean of both information content scores:

𝑠(𝑎𝑖 , 𝑏𝑗) ∶= √
𝐼 (𝑎𝑖−2…𝑎𝑖+2)2 + 𝐼 (𝑏𝑗−2…𝑏𝑗+2)2

2
The quadratic mean is optimal for combining information content values for
three reasons. First, it rewards high similarity of aligned segments with equally
high information content, which is the core mechanism for finding matching
stems. At the same time, it does not strongly penalize alignment of dissimilar
low-information segments, which is important for deriving low distance scores
for cognates that differ e.g. in a prefix, or in an infinitive ending. Finally, the
quadratic mean strongly discourages alignment of a high-information segment
with a low-information segment if the segment similarity is low, which is impor-
tant to prevent a low-cost match of parts of the stem which call cognacy into
question with irrelevant parts of the other string.

In the case of a gap, we simply define the combined information score 𝑠(𝑎𝑖 , −)
as the score 𝐼 (𝑎𝑖−2…𝑎𝑖+2) of the non-gap segment, which means that we penalize
the deletion of high-information segments, but not of irrelevant ones.

The information content also gives rise to the alternative language-specific
definition of phonetic string length which was used in Dellert & Buch (2015) for
measuring basicness:

𝑙(𝑎) ∶=
𝑎.𝑙𝑒𝑛𝑔𝑡ℎ
∑
𝑖=1

𝐼 (𝑎𝑖−2…𝑎𝑖+2)

Here, the indices which reach across the length of the word are intended to de-
note the boundary symbol # discussed before. For instance, where the German
verb gehen [ɡeeən] ‘to go’ has string length 5 by the standard definition, we get
𝑙([ɡeeən]) = 𝐼 ([##ɡee])+𝐼 ([#ɡeeə])+𝐼 ([ɡeeən])+𝐼 ([eeən#])+𝐼 ([eən##]) = 1.533,
i.e. it is comparable to a three-segment word like its English cognate go in infor-
mation content (𝑙([ɡəʊ]) = 1.619).
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But this definition of word length does not only discount predictable mor-
phemes like German -en, it also corrects for the effect of higher average word
length in languages with small phoneme inventories. In a language with a small
phoneme inventory (like Spanish), information values will generally be lower be-
cause the probability mass for each segment needs to be distributed over fewer
possible contexts.

The string distance measure is normalized through division by the maximum
of the so-defined sequence lengths, with the same reasoning as the equivalent
normalization for the Levenshtein distance, i.e. dividing by the length of the
longer string:

𝑑(𝑎, 𝑏) ∶= 𝑀(𝑛,𝑚)
max{𝑙(𝑎), 𝑙(𝑏)}

I propose to call this Information-Weighted Sequence Alignment (IWSA). The
associated string distance measure is the information-weighted distance (IWD),
and it is this distance that 𝑑(𝑎, 𝑏) for phonetic strings 𝑎 and 𝑏will denote through-
out the rest of this book.

4.3.4 Inspecting the results of IWSA

To illustrate how IWSA improves the quality of phonetic string distances over
more simple normalized weighted edit distances, we will now take a look at ex-
amples from two language pairs. To compute the alignments and the distance val-
ues, I use the language-specific phoneme distance models whose inference will
be motivated and described in the next section. Since both the vanilla weighted
edit distance and IWD are used on the same distance models, it is still a fair
comparison.

Turning first to English and German as a language pair that readers of English
will have some valid intuitions about, Figure 4.1 shows the information-weighted
alignment for the already mentioned cognate pair gefrieren/freeze. Again, trans-
parency is used to visualize information content. To visualize the phoneme dis-
tances 𝑑(𝑎𝑖 , 𝑏𝑗) in the optimal alignment, a color continuum is used, from green
(low phoneme distance) via yellow and brown towards red (high phoneme dis-
tance). The pink color of the pair ɡ/- indicates that it would typically count as
evidence against cognacy if we have to remove a [ɡ] to turn the German word
into its English counterpart, whichmakes sense givenminimal non-cognate pairs
such as Gold/old. However, here we have [ɡ] at the beginning of the word in
front of the vowel [ə], a pattern which never occurs in stem syllables because
they are always stressed in German, and [ə] is only possible in unstressed syl-

110



4.3 Information-Weighted Sequence Alignment (IWSA)

lables. Therefore, the frequent occurrence of the verbal prefix ge- leads to low
information content (high transparency), which means that the deletion of the
[ɡ] counts very little towards the overall distance score, keeping the score in the
region below 0.4 where cognate pairs will typically end up. Without informa-
tion weighting, the additional problem with the ʁ/z correspondence would have
carried the score well beyond this threshold.

ɡ ə f ʁ i i ʁ ə n DEU: gefrieren ‘gefrieren’
- - f ɹ i i z - - ENG: freeze ‘gefrieren’

0.361784

Figure 4.1: Visualization of IWSA between German gefrieren and En-
glish freeze

To provide more examples of the strengthening effect of cognate identifiabil-
ity, Table 4.2 lists the ten examples in the NorthEuraLex data where the IWD
score increased or decreased most drastically compared to simple weighted edit
distance (WED) on the same phoneme distances. Unsurprisingly, the differences
are strongest in the verbs, because the German infinitive ending -en is the single
situation where the German dictionary entries systematically contain morpho-
logical material in addition to the stem. If we do not strip the infinitive ending,
the German verb backen looks about as similar to its English equivalent to bake
as reinigen does to its non-cognate counterpart to clean. Just as intended, infor-
mation weighting massively increases the distances between such non-cognate
pairs, while decreasing the distance between cognates. A counterexample is the
non-cognate pair setzen and to place, which are less distant under information
weighting. However, the distance score remains well above our later cognacy
threshold of 0.45, meaning that these two words will not cause any problems to
cognacy detection.

A second language pair, Arabic and Hebrew, serves to demonstrate that infor-
mation weighting is a more generalizable principle which models more complex
phenomena than simple affix detection and removal. Again, we start by taking
a look at an example pair of cognate words. Abstracting over some complica-
tions, Semitic etymologies are always based on three-consonant roots, and the
intervening vowels are secondary material which expresses derivations from the
same root. In this case, the Arabic form for ‘snow’ can be reduced to the root pat-
tern Θ - L - Ǧ, and the Hebrew form reduces to Š - L - G. The phoneme distances
inferred from NorthEuraLex data for this language pair correctly encode close
correspondences Θ/Š, L/L, and Ǧ/G between the two languages, and as shown
in Figure 4.2, the information weighting correctly infers that the vowels do not
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Table 4.2: Comparison of normalized weighted string distances on Ger-
man and English

German English WED IWD Difference
wecken [vɛkən] wake [weɪk] 0.477 0.207 -0.269
backen [bɑkən] bake [beɪk] 0.517 0.258 -0.259
setzen [zɛt͡sən] place [pleɪs] 0.904 0.653 -0.251
fischen [fɪʃən] fish [fɪʃ] 0.263 0.019 -0.244
fallen [falən] fall [fɔɔl] 0.590 0.357 -0.233
verkaufen [fɛɐkaʊfən] sell [sel] 0.698 0.899 +0.202
färben [fɛɐbən] dye [daɪ] 0.729 0.941 +0.212
reinigen [ʁaɪniiɡən] clean [kliin] 0.508 0.729 +0.221
eilen [aɪlən] rush [rʌʃ] 0.694 0.928 +0.234
zuhören [t͡suuhøøʁən] listen [lɪsn] 0.615 0.851 +0.236

θ a l - dʒ ARB: θalǧ ‘snow’
ʃ ɛ l ɛ ɡ HEB: šeleg ‘snow’

0.312547

Figure 4.2: Visualization of IWSA between Arabic θalǧ and Hebrew
šeleg ‘snow’.

contain much information, whereas consonants are very important. This results
in a very low alignment score for the dissimilar cognate forms θalǧ and šeleg.

In Table 4.3, the comparison of IWD and WED is repeated for this language
pair. This time, I quote selected examples from both ends of the difference rank-
ing in order to demonstrate a wider variety of cases. All the pairs in the first
half of the table feature cognate roots, although some derivations can differ. The
words for ‘to cough’ show different verb stems of the same root, whereas the
words for ‘soon’ are only partial cognates. As is visible in the still high distance
score for those word pairs, these two phenomena do cause some trouble for the
algorithm. However, the first two examples show that information weighting
helps considerably in recognizing clearer cognates. The second half of the table
shows some representative instances of word pairs which are non-cognate, but
receive too low distance scores without information weighting. In all these cases,
information weighting provides the necessary focus on the root consonants to
show that the word pairs are not cognates.
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Table 4.3: Comparison of normalized weighted string distances on Ara-
bic and Hebrew

Concept Arabic Hebrew WED IWD Diff.
water (plant) saqā [saqaa] hiška [hiʃka] 0.667 0.491 -0.176
calculate ḥasaba [ħasaba] xišev [χiʃɛv] 0.424 0.297 -0.127
cough saʿala [saʕala] hišta’el [hiʃtaʔɛl] 0.510 0.394 -0.115
week usbūʿ [usbuuʕ] šavu’a [ʃavuʔa] 0.539 0.432 -0.107
soon qarīban [qariiban] bəkarov [bəkaʁov] 0.651 0.577 -0.074
bathe istaḥama [istaħama] taval [taval] 0.515 0.690 +0.175
soup ḥasāʾ [ħasaaʔ] marak [maʁak] 0.566 0.745 +0.179
fall saqaṭa [saqɑtˤɑ] nafal [nafal] 0.641 0.847 +0.206
gather ǧamaʿa [d͡ʒamaʕa] asaf [asaf] 0.515 0.727 +0.212
want šāʾa [ʃaaʔa] ratsa [ɾat͡sa] 0.455 0.670 +0.225

4.4 Modelling sound correspondences

With IWSA (or any other sequence alignment algorithm) in place, the task of
computing good alignments and phonetic distances 𝑑(𝑎, 𝑏) for words 𝑎 and 𝑏
from different languages 𝐴 and 𝐵, reduces to deriving good phoneme distances
𝑑(𝑎𝑖 , 𝑏𝑗). At the minimum, the phoneme distance matrix should encode some
of our phonological knowledge (e.g. that [b] is closer to [p] than to [l]), and
ideally also some of the knowledge historical linguists rely on when assessing
plausible changes. For example, a shift from [s] to [h] is rather common, whereas
a correspondence between [s] and [w] is not, which would in practice make us
more skeptical about a proposed cognate pair with the latter correspondence
than one with the former. We could attempt to manually code this historical
knowledge into a phoneme distancematrix, or derive it from phonological theory
using feature overlaps, but in practice, it has provenmuchmore viable to estimate
these distances from cross-linguistic data.

Using such global sound similarities, loanwords from 𝐵 in 𝐴 will tend to have
lower distance values than possible true cognates between 𝐴 and 𝐵. To bring the
true cognates closer together according to the measure, the linguistically mo-
tivated approach would be to take a look at a range of cognate candidates to
see whether recurrent sound correspondences appear, and then use these corre-
spondences to decide which words are true cognates. The question is how this
information on recurrent sound correspondences can be detected by a computer,
and how they can be used to modify the phoneme distances 𝑑(𝑎𝑖 , 𝑏𝑗) in such a
way that true cognates receive lower overall distance scores. In current systems,
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the inference of global sound similarities and of pairwise sound correspondences
tends to be approached in very similar ways, allowing me to cover both as parts
of a single discussion in this section. But before introducing this approach, amore
general view of the problem, and computational perspectives on it, is in order.

4.4.1 Perspectives on sound correspondences

In mainstream historical linguistics, sound changes are taken to apply without
exception to all words in a language. But this does not lead to exceptionless corre-
spondences in attested languages, since sound changes tend to be conditioned on
phonetic environments. Moreover, these sound changes can feed or bleed each
other, i.e. one change can create or destroy the necessary environment for an-
other change. Other phenomena we discussed in Chapter 2, such as analogies
and partial cognacy, further complicate the picture. These complexities are what
makes historical linguistics difficult, and why the resulting pattern we can ob-
serve between a pair of languages after millennia of independent sound changes
is much less regular than one might hope given that changes occur without ex-
ception.

This surface irregularity, and the fact that even the entire lexicon of two lan-
guages, let alone a list of 200 basic vocabulary items, would typically not suf-
fice to unravel the regular processes generating the chaotic-looking result, has
led computational historical linguists to adapt statistical techniques for handling
sound correspondences asmere tendencies, while acknowledging the central role
of regular sound changes for successfully reconstructing and proving phyloge-
netic facts. For combinatorial reasons, automated methods typically only derive
single-segment correspondences, without attempting to model contexts. This
will make even the most regular sound correspondences seem irregular, further
increasing the need for statistical modeling.

Hruschka et al. (2015) present the first fully probabilistic account of sound cor-
respondences, enhancing the Bayesian paradigm that was so successful in phy-
logenetic inference by an explicit sound change model with support for regular
context-free replacements. Inferring good phylogenetic trees over 26 Turkic lan-
guages directly from a large IPA-encoded and pre-aligned dataset, they assume
a regular sound change to have occurred whenever assuming it makes the tree
more likely than if the observed pattern is generated by independent sporadic
replacement events. The resulting trees explicitly include the sound changes on
each branch, andwhen they occurred.While this gives amathematically very sat-
isfying account of sound correspondences, the approach presupposes cognacy
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judgments and aligned input data, making it unsuitable as a component for a
more universally applicable toolchain which needs sound correspondences in
order to automatically infer good cognacy judgments. Also, the low time depth
and very regular phonology of Turkic languages leads to the question how well
this approach would generalize to other, more complex language families.

One general approach to extracting sound correspondences in the absence of
cognacy judgments uses techniques developed for inferring translation corre-
spondences from parallel texts. This line of research was pioneered by Kondrak
(2002), whose ALINE system clearly outperforms older systems like COGNATE
by Guy (1984) and JAKARTA by Oakes (2000) at the task of detecting a gold-
standard list of sound correspondences between some pairs of closely related
languages. List (2014) repeats the evaluation against his own Sound Class Algo-
rithm, and shows that it further improves upon the ALINE system on the same
dataset. Previous work on inferring sound correspondences has tended to focus
on very few language pairs, and only very rarely beyond a single language family.
This may in part be due to the lack of a lexical database in uniform transcription
that would span several language families, and partly due to the necessity of be-
ing deeply familiar with the languages in question in order to be able to assess
the results from a linguistic perspective.

The most large-scale work on cross-linguistically reoccurring sound corre-
spondences was done by Brown et al. (2013), who used a very simple heuristic
to extract a frequency ranking for correspondences between ASJP classes from
the ASJP database. For each pair of related languages, they extracted all word
pairs which differed in exactly one position (as an approximation to cognacy),
and counted every such difference which occurred in more than one word pair
as a recurrent sound correspondence. Segment distances derived from the cross-
linguistic prominence of segment correspondences showed a good agreement
with various psycholinguistic measures of phoneme similarity.

4.4.2 Modeling sound correspondences as similarity scores

The essential concept behind modern work on sound correspondence detection
has been pointwise mutual information (PMI), which we already encountered in
Chapter 3. In words, it is defined as the logarithm of the observed number of
cooccurrences of two events divided by the number of cooccurrences we would
expect if both events were independent. Pointwise mutual information has suc-
cessfully been applied in many areas of computational linguistics. For instance,
it is a well-established method for inferring multi-word expressions (e.g. Bouma
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2009). Applying this to sound correspondences by writing the joint probability
of occurrences between two segments 𝑠1 and 𝑠2 as 𝑝(𝑠1, 𝑠2), the pointwise mutual
information of these segments would be defined as

𝑖(𝑠1, 𝑠2) ∶= log
𝑝(𝑠1, 𝑠2)
𝑝(𝑠1)𝑝(𝑠2)

The problem of pointwise mutual information for sound correspondences is
that due to the non-random nature of phoneme sequences (e.g. a preference for
the consonant-vowel pattern CVCVCV over CCCVVV), there will always be non-
zero mutual information between any pair of consonants and vowels, even if the
languages the correspondences are inferred for are completely unrelated. It is
unclear how one could correct for this effect.

The decisive idea which helped to successfully address this problem goes back
to Kessler (2001).The solution is still a PMI-based approach in comparing actually
observed instances of aligned phonemes to expected values, but differs in theway
the expected values are estimated. The estimation in these approaches is based
on resampling through permutation, i.e. aligning a sample of word pairs with
different meaning in the same way that the cognacy candidates are aligned, and
then counting the number of times each pair of segments occurred in one column
in the resulting alignments. With slight modifications, this is the approach used
to derive pairwise sound correspondences taken by List (2012a) in the LexStat
method. To compute alignments, LexStat mixes a global linguistically motivated
similarity score matrix with the PMI-based sound correspondence scores into
combined scores.

4.4.3 Inferring global correspondences from NorthEuraLex

In my architecture, I stay within the tradition of the permutation framework, al-
though with some slight adaptations due to the use of information weights, and
the necessity to derive segment distances in the range [0, 1] for IWSA.Thismeans
that we need to map the permutation-based PMI scores, which will typically end
up in the range between -5 and 5, onto distance values in this range. Inspection
shows that a score lower than -1 always indicates that the two segments involved
should never be aligned, and that values higher than 2 are an indication of near
perfect correspondences, meaning that alignment of such segments should not
cost anything. Taking the simplest possible approach to building on these con-
siderations in order to map the PMI score 𝑝𝑚𝑖(𝑎, 𝑏) between segments 𝑎 and 𝑏
to distances in the desired range, in a first step we disallow values above 2 and
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below -1 to yield a truncated version 𝑡𝑝𝑚𝑖(𝑎, 𝑏) = min(2,max(−1, 𝑝𝑚𝑖(𝑎, 𝑏))). In
the second step, the values from the range [−1, 2] are inverted (because high PMI
means low distance), and mapped linearly to the desired range by shifting the
minimal value to 0 and scaling by a factor of 3, leading to the transformation
(2 − 𝑡𝑝𝑚𝑖(𝑎, 𝑏))/3. We end up with the following formula for inferring global
segment distances:

𝑤𝑔𝑙𝑜(𝑎, 𝑏) ∶=
2 −min (2,max (−1, ln ( 𝑐(𝑎,𝑏)̂𝑐(𝑎,𝑏))))

3
The interesting decisions are now hidden behind the symbols 𝑐 and ̂𝑐. Unlike

in List’s approach, the counts 𝑐 do not count the number of times the symbols
were aligned directly, but each instance in a candidate cognate pair (an align-
ment with normalized Levenshtein distance smaller than 0.5) only counts with
its combined information content. Using the notation 𝑎𝑙(𝑤, 𝑣) for the optimal
information-weighted alignment of a word pair (𝑤, 𝑣) according to the current
segment distances, 𝑎𝑙(𝑤, 𝑣).𝑠𝑐 for the distance score resulting from that align-
ment, and 𝑎𝑙(𝑤, 𝑣).𝑣 and 𝑎𝑙(𝑤, 𝑣).𝑤 to refer to the individual strings (with gap
symbols) in which positions can be indexed by subscripts, this way of counting
pairs of aligned segments can be written in one expression as follows:

𝑐(𝑎, 𝑏) ∶= ∑
𝐿1,𝐿2∈ℒ

∑
(𝑤,𝑣)∈𝑙𝑒𝑥(𝐿1,𝐿2),
𝑎𝑙(𝑤,𝑣).𝑠𝑐<0.5

∑
1≤𝑖≤𝑎𝑙(𝑤,𝑣).𝑙𝑒𝑛,
𝑎𝑙(𝑤,𝑣).𝑤𝑖=𝑎,
𝑎𝑙(𝑤,𝑣).𝑣𝑖=𝑏

𝑠(𝑎𝑙(𝑤, 𝑣).𝑤𝑖 , 𝑎𝑙(𝑤, 𝑣).𝑣𝑖)

Without taking information content into account when counting occurrences,
regularly recurrent morphology would inflate the similarity between some very
distinct phonemes. For instance, the frequent mapping of Turkish infinitive end-
ings -mak and -mek on the -u in closely related Tatar would result in a spuri-
ous correspondence between [m] and [u]. More generally, information content
weighting of counts removes the effect of reoccurring morphological material in
non-stemmed data.

As in other permutation-basedmethods, the expected count ̂𝑐(𝑎, 𝑏) to compare
𝑐(𝑎, 𝑏) against is derived from the exact same computations on permutations
of the input data. More concretely, we collect the original data pairs (𝑤, 𝑣) ∈
𝑙𝑒𝑥(𝐿1, 𝐿2)whichwere considered cognate candidates (𝑎𝑙(𝑤, 𝑣).𝑠𝑐 < 0.5) into two
parallel lists 𝑤𝑙 and 𝑣𝑙 , which we then randomly permute to derive scrambled
databases 𝑙𝑒𝑥′(𝐿1, 𝐿2) ∶= (𝑤𝑙, 𝜋(𝑣𝑙)) for random permutations 𝜋 . Given the large
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amounts of data in NorthEuraLex, 10 resamples were typically enough to derive
very stable values for ̂𝑐(𝑎, 𝑏).

After iterating the scoring scheme three times in order to include more distant
cognates based on rough earlier approximations, the result derived from a final
number of more than 300,000 good cognacy candidate pairs in NorthEuraLex is
visualized in Figure 4.3. All segment distance scores lower than 0.5 are visualized
as links, and the thickness of the lines represents the similarity of the segments. A
perhaps more readable representation of global sound segment correspondences
was given in the overview of the IPA inventory already, where the neighbors are
sorted by ascending distance, and distances between 0.5 and 0.6 are additionally
given in gray color.The asymmetry in some of the neighbor relations is due to the
fact that values vary slightly with the random permutations used for estimating
̂𝑐(𝑎, 𝑏). In tests, this slightly non-deterministic behavior remained even for 100

resamples, and only has negligible effects in later computations.

4.4.4 Inferring pairwise correspondences for NorthEuraLex

To infer sound correspondence models for each pair of languages, we repeat the
procedure that we used for inferring the global sequence similarities on cognate
pairs for that language pair.The core idea is that if strong sound correspondences
are found, they will represent the type of correspondences we can expect in true
cognates. Because the local model for unrelated languages will not find any corre-
spondences beyond random noise (or at least, the signal will be weaker than the
global sequence similarities), we need to maintain the global correspondences in
order to find loanwords between unrelated languages. This motivates the design
choice to define the combined distance 𝑑(𝑠1, 𝑠2) between two segments as the
minimum of the global distance 𝑑𝑔𝑙𝑜(𝑠1, 𝑠2) and the local distance 𝑑𝐿1,𝐿2(𝑠1, 𝑠2).
In this, the architecture presented here differs significantly from the approach
implemented in LingPy, where the alignment scores are based on a mixture of
global and pair-specific correspondence scores, and not the minimum.

We conclude the discussion of sound correspondence inference by taking a
closer look at the inferred correspondences for several language pairs. Figure 4.4
visualizes the inferred correspondences between English andGerman in the form
of what I will call a drift graph. Between all the IPA segments present in one
language, we visualize all segment distances below a value of 0.5, and use the
thickness of lines to represent segment similarity. Global correspondences which
were not strengthened by inference of correspondences remain in black, whereas
green arrows represent correspondences which were strengthened from the per-
spective of the first language. The arrows can thus be read as the regular sound

118



4.4 Modelling sound correspondences

Figure 4.3: Visualization of phoneme similarity as inferred from the
NorthEuraLex data
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Figure 4.4: Drift graph of inferred correspondences from English to
German

changes which would be inferred under the assumption that the first language
developed into the second one.

For English and German, most sound correspondences are inferred correctly.
For instance, English [p], while corresponding to German [p͡f] in most contexts,
often corresponds to [f] due to subsequent simplification, as can be seen in ex-
amples such as the cognate pairs ripe and reif, sharp and scharf, and sheep and
Schaf. Also, an apparent chain shift [ð]→ [d]→ [t]→ [t͡s] becomes very clearly
visible. The detected shifts correctly represent the High German consonant shift
which occurred in the southern parts of the West Germanic dialect continuum,
giving rise to Old High German. Other prominent correspondences include [s]
→ [z] (as in sun [sʌn] vs. Sonne [zɔnə]), [v] → [b] (as in give [ɡɪv] vs. geben
[ɡeːbən]), and [w] → [v] (as in water [wɔːtə] vs. Wasser [vasɐ]).

Turning to another pair of closely related Indo-European languages, we take
a look at the drift graph from Lithuanian to Latvian in Figure 4.5. Here, we
have some very prominent correspondences without which an automated sys-
tem would fail to find many cognates even between this closely related pair of
languages. The three most prominent correspondences are Lithuanian [k] and
Latvian[t͡s], (reflected in cognate pairs such as kepti/cept ‘to bake’ and lokys/lā-
cis ‘bear’), Lithuanian [ɡ] vs. Latvian [d͡z] (as in giesmė/dziesma ‘song’ or gyven-
ti/dzīvot ‘to live’), and Lithuanian [ʋ] vs. Latvian [f] (due to devoicing in Lat-
vian in pairs such as tėvas/tēvs ‘father’ or žuvis/zivs ‘fish’). There is a problematic
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Figure 4.5: Drift graph of inferred correspondences from Lithuanian to
Latvian

(though weak) correspondence between [n] and [ɔ]. Inspection of the alignments
shows that this happens in cognates where Lithuanian an [ɐn] corresponds to
Latvian o [uɔ] (also reflecting ancestral *an) in word pairs such as ranka/roka
‘hand’ and antras/otrais ‘second’, which cannot be modeled by single-segment
correspondences.

Moving to a second language family, we inspect the drift graph from Finnish
to Northern Saami in Figure 4.6. While some of the inferred shifts make a lot of

0

ə

a

æ

ɑ b

β

c

t t ͡ʃ

ʃ

d

ð

e

i ɛ

f

h

x

ɡ

j

k

ç

l

ʎ

m

n

ŋ ɲ

p r

s

t ͡s

u

w

y

ɥ

ʊv

ʋ

œ

ʏɔ

Figure 4.6: Drift graph of inferred correspondences from Finnish to
Northern Saami
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sense, we quickly notice that some of the inferred correspondences are a lot less
plausible than the examples we have seen so far. For instance, there are weak cor-
respondences [ɛ]/[ʃ] and [n]/[c] which seem completely out of place. Inspection
of the relevant alignment pairs shows that much like in the case of the erro-
neous correspondence between Lithuanian and Latvian, these patterns are due
to non-root segments. Some Finnish nouns in -e which historically ended in *-ek
are cognate with Northern Saami nouns in -aš. Examples in the NorthEuraLex
database includemurhe/moraš ‘sorrow’, perhe/bearaš ‘family’, and käärme/gearp-
maš ‘snake’. The reasons for the erroneous inference of [n]/[c] are more subtle.
Relevant pairs include sanoa/dadjat ‘to say’ and huono/headju ‘bad’. In both of
these cases, Saami dj [cc] overlaps in alignmentswith Finnish n, a situationwhich
occurs too often to be attributable to chance, and is therefore resolved by match-
ing the Finnish [n] with one of the [c] sounds of the Saami geminate.

Much more difficult to recognize, due to the low number of cognates, are
the major sound shifts which separate Finnish from Hungarian. The relevant
drift graph in Figure 4.7, however, still clearly shows two of the major sound
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shifts which occurred in the history of Hungarian. The correspondence [k]/[h]
is correctly inferred from cognate pairs such as kala/hal ‘fish’ and kuulla/hall
‘to hear’, and the correspondence [p]/[f] covers pairs such as puu/fa ‘tree’ and
pää/fő ‘head’. The vowel correspondences are a lot more chaotic, and also less
well-represented, leading to fewer local correspondences among vowels, except
a tendency to map Finnish e [ɛ] to Hungarian é [e], due to cognate pairs such as
pesä/fészek ‘nest’, and amapping of the vowel [u] (muchmore frequent in Finnish
than Hungarian) to [ɒ], which is very frequent in Hungarian, but does not occur
in Finnish. The mapping of Finnish ä [æ] to the gap symbol is mainly due to the
fact that an overwhelming majority of dictionary forms of Finnish words ends in
a vowel, whereas Hungarian has undergone a process of monosyllabification (as
evidenced in some of the examples above). The purpose of the cheap vowel-to-
gap mappings for modeling Finnish-Hungarian cognates is therefore to reduce
the costs of deleting the trailing vowel from the Finnish lexemes, which contains
little information that would be relevant for comparison with Hungarian.

Finally, to illustrate that no local sound correspondences are inferred for a typ-
ical pair of unrelated languages, the drift graph from Basque to Nivkh is given in
Figure 4.8. As expected, we see almost no green arrows in this drift graph, and
the two arrows which do exist are very thin, indicating only small changes to
the phoneme distances. Here, the spurious correspondence [i]/[c] is due to the
fact that a large class of Basque verbs ends in -i, whereas the dictionary form
of the Nivkh verb virtually always ends in -t’, which is pronounced [c]. With-
out information weighting detecting and modeling that these elements are not
very informative, the effect of this systematic pattern would have been much
stronger. The [s]/[h] correspondence is due to the low frequency of word-initial
[h] in Nivkh and the high frequency of [s] (written z) in Basque, combined with
a handful of spurious similarities such as azal and hal ‘skin’.

4.4.5 Aligning NorthEuraLex and deriving form distances

Unlike the LexStat sequence distance by List (2012a), IWSA does not need to
be modified by using an end-space free variant of the dynamic programming
algorithm, because recurrent prefixes and suffixes are treated by the information
weighting, and compounds must not be treated as full cognates. For a recent
treatment of partial cognacy, the case I am avoiding, the reader is referred to
recent work on detecting partial cognacy by List et al. (2016).

The main building block of my procedure for deriving form distances from
NorthEuraLex is thus IWSA on word class-specific information models, com-
bined with a scoring scheme which maps both global and pair-specific phoneme
distance scores onto [0, 1] by cutting off extreme values of mutual information.
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Figure 4.8: Drift graph of inferred correspondences from Basque to
Nivkh

4.5 Cognate clustering

The final step in the pipeline from raw phoneme sequence data to an estimate
of cognate sets is to derive cognate sets from the normalized sequence distances.
For this step, I will not attempt to introduce any new ideas. Instead, this section
gives an overview of current approaches to the cognate clustering problem, and
motivates the use of a comparatively well-established method for the purposes
of my research.

4.5.1 The cognate detection problem

Thebinary cognacy judgments problem can be simplified considerably by exploit-
ing the fact that cognacy judgments should be transitive, i.e. if we assume a pair
of words 𝑤1 and 𝑤2 to be cognates, and a third word 𝑤3 to be cognate with 𝑤2,
we must also assume that𝑤1 and𝑤3 are cognates. Mathematically, this reduces a
solution to the cognate detection problem to a partition𝑊 = 𝑊1⊎𝑊2⊎⋯⊎𝑊𝑛 of
a set of phonetic strings𝑊 , such that 𝑤𝑖 and 𝑤𝑗 represent words with a common
ancestor iff 𝑤𝑖 , 𝑤𝑗 ∈ 𝑊𝑘 for one of the sets𝑊𝑘 . From an algorithmic perspective,
deriving such a partition is a clustering problem, forwhichwell-defined solutions
exist if there is a distance matrix which defines the dissimilarity between each
pair of data points. This is the approach taken by practical solutions to cognate
clustering, at least as a final step.
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4.5 Cognate clustering

4.5.2 Approaches to cognate clustering

A very quick and simple method for cognate detection was proposed by Turchin
et al. (2010), who reduce the phonetic forms to nine consonant classes of roughly
the same granularity as the Dolgopolsky classes, and approximate cognacy judg-
ments by defining two words to be cognate iff the first two consonant classes
are identical. The binary judgments are not explicitly used to create cognate sets,
because the authors are only interested in statistical evidence of language-wide
long-distance relationships. Still, a definition based on identity is trivially transi-
tive, turning this into a very quick and at least partially linguistically motivated
way of partitioning a list of phoneme sequences into rough cognate classes.

We now come to the more mainstream approaches, where some distance ma-
trix between surface forms is given. On data of this type, a wide range of well-
understood clustering algorithms can in principle be used to derive cognate sets.
Popular algorithms include hierarchical (i.e. tree-building) clustering algorithms
such as single-linkage clustering, complete linkage clustering, and UPGMA (So-
kal &Michener 1958). Centroid-based clustering algorithms such as k-means clus-
tering (Lloyd 1982) are only of very limited use to this application, because we
do not have an explicit feature representation of the objects (put differently, the
objects are not explicitly represented as vectors in a space). While kernelized
variants of some clustering algorithms could in principle be used, the usage of
clustering algorithms which operate on the level of single links is much more
natural on data which comes in the shape of a distance matrix.

Hierarchical clustering algorithms are themost obvious choice for a taskwhere
we have nothing more than distance values for all pairs of objects. For instance,
UPGMA derives a hierarchical clustering (a tree) over the data points by itera-
tively adjoining the element that has the smallest average distance to one of the
existent clusters (= subtrees) as a sister node to the head of that subtree. To derive
a partition into cognate sets from such a hierarchical clustering, all one needs to
do is to stop the process at a user-defined threshold value before the entire tree
is constructed, and to treat the subtrees created so far as cognate sets. Since the
output of this variant does not include a tree structure, it is called flat UPGMA.

The disadvantage of any hierarchical clustering method is that it is difficult
to avoid chaining effects, where very distant points are erroneously clustered
together through a dense chain of intermediate points which build a bridge be-
tween the two distant points. Since no alternative clustering paradigm is with-
out such weaknesses, UPGMA remains the default method for deriving cognate
clusters from form distance matrices. For instance, the cognate clustering in
LingPy is implemented by running UPGMA up to a user-defined threshold on
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user-definable form distances, the default being the distances inferred by LexS-
tat or SCA.

Moving beyond UPGMA, attractive alternative clustering algorithms for the
cognate detection task have recently been found in the community detection lit-
erature. Community detection algorithms can be applied to cognacy detection by
creating a node for eachword form, and connecting all pairs of forms below a cer-
tain distance threshold. In the algorithms which operate on weighted networks,
the weights of the connections can be defined from the form distances. The com-
munities found in the network, subgraphswhich are in some sensemore strongly
connected internally than to other parts of the graph, can then be interpreted as
representing cognate clusters.

Among community detection algorithms, label propagation by Raghavan et al.
(2007) is conceptually the most simple, and it is also very efficient because it is
based on local update decisions. The core procedure of the unweighted variant
is to start with a unique label on each node, and then to iteratively reassign the
labels, letting each node adopt the label shared by most of its neighbors. In situ-
ations where there is no single such label, the new label is selected through uni-
form sampling among the best options. The process is stopped once every node
has at least as many neighbors with its current label as with any other label. As
the authors show, nodes with identical labels agree very well with the commu-
nity structure in several interesting types of networks. While label propagation
has the advantage of avoiding chaining effects, it has a problematic tendency
to assign every node to one of the larger clusters, leading to quite a few false
positives if some words do not have any cognate in the input set.

The InfoMap community detection algorithm by Rosvall & Bergstrom (2008)
tends to perform better in this respect, and has therefore gained some traction
in the field as a useful alternative to UPGMA. InfoMap is based on sampling ran-
dom walks through the network to derive a representation of information flow.
Concepts of information theory are used to map partitions into two-level encod-
ings for random walks, where efficient encodings lead to shorter descriptions of
the random walks. Using general optimization techniques to derive a partition
whose two-level encoding minimizes the expected description length of a ran-
dom walk, the algorithm infers a macro-structure which compactly represents
the network, and can be interpreted to reveal the community structure.

Very recently, List et al. (2017) compared the performance of Turchin’s crite-
rion as well as UPGMA on edit distance, UPGMA on SCA distance, UPGMA on
LexStat distance, and InfoMap on LexStat distance, on a reasonably wide range of
single-family datasets contributed by experts. Surprisingly, they find that the ac-
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curacy across all the approaches only varied between 82% and 89%, with LexStat
performing best, and a very slight advantage for InfoMap clustering over UP-
GMA. Rama et al. (2017) combine PMI-based distance scores with InfoMap clus-
tering, and evaluate the resulting system on a range of datasets against LexStat,
as well as an alternative distance score derived from Pair Hidden Markov Models
(PHMM). On a range of test sets, they find that PMI scores trained in an unsuper-
vised fashion using online expectation-maximization, in combination with the
Needleman-Wunsch algorithm and InfoMap clustering, beat LexStat by a small
margin on a number of datasets. On average, both LexStat and their best system
are again not much better than normalized Levenshtein distance (0.819/0.842 vs.
0.804) in the B-Cubed F-score measure used by both papers to measure accuracy.
It therefore seems relatively easy to achieve a quite respectable performance us-
ing any method, while improving on the already good baseline performance of
simple methods appears to be quite difficult. From the perspective of a historical
linguist, it is at least promising to see that the correspondence-based LexStat dis-
tances and PMI-based distances come out on top across approaches and datasets.

Within the machine learning paradigm, cognate detection can alternatively
be viewed as a binary classification problem. This implies using test data to let a
system learn to make correct binary decisions (cognate or non-cognate) for pairs
of words. Early work in this direction is summarized by Rama (2015), who trains
a Support Vector Machine (SVM, a mainstream model in machine learning) over
a feature representation that encodes shared subsequences, and shows that this
feature set outperforms earlier SVM-based attempts. Moving to non-linear classi-
fiers, Rama (2016) applies a convolutional neural network (CNN) on handcrafted
representations of ASJP data, and shows that this approach is quite successful at
deciding cognacy between pairs of words from smaller families. Unfortunately,
the results are not compared to other approaches outside the binary classification
paradigm.

Since the results of pair-wise classification will typically not lead to a consis-
tent result (as the cognacy relation is transitive, whereas binary decisions taken
in isolation will typically not be), it will typically need to be combined with an
additional clustering stage in order to arrive at a partition into cognate sets. This
is the approach taken by Jäger & Sofroniev (2016), who train an SVM to predict
pairwise probabilities of non-cognacy from phonetic distances, overall language
distance, and average word length, and combine the result with UPGMA cluster-
ing to derive the cognate sets. The method is reported to slightly outperform
LingPy’s LexStat method on the cognate clustering task, and seems to profit
from better clustering methods. Given sufficient amounts of training data, su-
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pervised machine learning methods for classification have thus started to show
some promising results for the cognate detection task.

Unfortunately, the way in which all these methods have so far been evaluated
does not tell us much about their performance on a dataset like NorthEuraLex
which spans several language families. For such multi-family datasets, it makes
sense for a system to put more effort into avoiding false positives, whereas for
intra-family comparison, the probability that two similar-looking words for the
same concept are not cognate is very small. Since we do not yet have a cognacy-
annotated subset of NorthEuraLex which spans several language families, super-
vised machine-learning methods are impossible to apply. Still, comparing my
own IWSA-based system to LingPy provides some indication of how it would
fare against these methods, given that they have so far not managed to outper-
form LingPy significantly.

4.5.3 Deriving cognate sets from NorthEuraLex

By using the same variant of the UPGMA algorithm as LingPy, I am opting for a
well-established method for deriving cognate sets inference from form distances.
To derive the threshold value formy IWSA-based distances, manual inspection of
the cognate sets for a handful of concepts on different threshold values suggested
0.45 as leading to results which best fitted my knowledge about the true cognate
sets in Indo-European and Uralic. Since a part of the evaluation we are going
to see in the next section is threshold-independent, the empirically determined
thresholds from this step will be combined with this impression to decide on the
threshold value used for the cognate clustering that the following chapters will
build on.

4.5.4 Evaluation on IELex intra-family cognacy judgments

As previously mentioned, the lack of fully cognacy-annotated cross-family data
sets makes it difficult to quantitatively evaluate the quality of the cognacy judg-
ments produced by my architecture. Still, it is necessary to at least test on a
small subset whether the results are measurably better than the LingPy output,
just as the initial inspection in the last section suggested. Also, this small subset
can help us in deriving good threshold values if we systematically analyse the
precision-recall tradeoff provided by threshold selection.

For this purpose, I was able to use a dataset kindly provided by Pavel Sofroniev,
who created the intersection of IELexwith an earlier version of theNorthEuraLex
database. For the languages and concepts which are covered by both databases,
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the referenced word forms were manually compared and mapped to each other,
producing a database of NorthEuraLex IPA strings with the cognacy annotations
given in IELex. After being updated to reflect version 0.9 of NorthEuraLex, the
dataset now covers 6,106 words for 185 concepts across 37 Indo-European lan-
guages, providing a very interesting test set for cognate detection that is available
as part of the supplementary material for this book (see Appendix C).

To derive the LexStat distances and cognacy judgments, I converted the entire
NorthEuraLex database into the tabular input format required by LingPy, doing
some trivial symbol replacements until LingPy found the input to be free of er-
rors, and running the LexStat method on the entire database, building on code
by Johannes Wahle for deriving cognate sets from the ASJP-encoded version of
NorthEuraLex. In this code, LingPy is called according to recommendations by
Mattis List, which included setting LexStat’s threshold parameter to 0.7, and let-
ting the scorer run without preprocessing, but with many iterations. Setting the
runs parameter to a rather large number of 1,500 yielded stable results which
barely changed when adding additional iterations, and had the advantage of still
being able to infer cognate sets from NorthEuraLex in under six hours on an
average office machine.

The cognate sets produced by my architecture and by LingPy were then re-
duced by ignoring all forms which were not in the test set, and throwing away
all cognate sets which contained no form from the test set. The resulting cognate
sets were converted into 100,155 pairwise cognacy judgments, on which it is easy
to define pairwise performance measures like precision and recall. Each pair of
words which are cognate according to IELex is counted as a true positive (TP) if
it ends up in the same automatically derived cognate set, and as a false negative
(FN) if it is not. Assuming the cognacy judgments in IELex to be complete, any
pair of words which are inferred to belong to the same cognate set, but assigned
to different cognate set IDs in IELex, is counted as a false positive (FP), and any
pair that is not cognate in IELex, and is also assigned to two different cognate
sets by an automated system, counts as a true negative (TN).

For evaluation, we compare the performance of three form distances in terms
of average pairwise precision, and select optimal threshold values for each dis-
tance by means of the precision-recall curve. The three distances we are going to
infer are LexStat distances to represent the state of the art, and the mixed scores
with constant information (WED) as well as with information weighting (IWD)
as computed by my implementation, to measure possible improvements due to
my way of inferring sound correspondences, and further improvements due to
information weighting. Figure 4.9 shows the precision-recall curves for all three
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Figure 4.9: Precision-recall curves for cognate detection variants.

distances, which visualizes the behavior of the tradeoff between precision and
recall under changing threshold values. In the low-recall range (i.e. for the easy
cases), LexStat is better than the other two methods, but its precision decays
more quickly with higher recall. This makes IWD and WED better suited for the
more difficult instances. The fact that the IWD curve is always higher than the
WED curve shows the global advantage of information weighting for separating
cognates from non-cognates.

Table 4.4 includes the corresponding average precision values, which is de-
fined as the precision integrated over all possible recall values. This gives us a
possibility to quantify and compare performance independently of the choice of
threshold value. According to this measure, IWD is better than WED, which in
turn performs better than LexStat.

The remaining entries of the table contain the necessary numbers for motivat-
ing our threshold decisions for IWD and LexStat. If we had no preference for
either recall or precision, we could simply maximize the F-score. However, since
spurious cognates are a lot more problematic for lexical flow than unrecognized
deep cognacy, we want to select for high precision. The figure shows the thresh-
old values corresponding to accuracy values of 85% and 90%, and the F-score
that can be achieved by choosing that threshold value. It turns out that our ini-
tial choice of 0.45 for IWD, and the recommendation of 0.7 for LexStat, are in the
range that should lead to precision in the desired range. To avoid overfitting to
what also constitutes our test set, I only take this information as confirming the
initial decisions, and do not optimize the threshold values further.
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Table 4.4:Quantitative comparison and data for motivating the thresh-
olds chosen for cognate detection

Method LexStat WED IWD
Average Precision 0.733 0.747 0.766
Threshold for max. F-score 0.831 0.590 0.591
Maximal F-score 0.630 0.662 0.681
Threshold for 85% Precision 0.737 0.495 0.462
F-score at 85% Precision 0.585 0.612 0.632
Threshold for 90% Precision 0.698 0.430 0.387
F-score at 90% Precision 0.544 0.537 0.556

The already mentioned B-Cubed measures have become the standard for cog-
nate detection since Hauer & Kondrak (2011) used them for evaluation, demon-
strating the usefulness of measures which go beyond pairwise comparison by
taking the inferred clusters into account. For a single word, a recall measure can
be defined as the percentage of gold-standard cognates (including the word itself)
which occur together with the word in the same result cluster, and an analogous
precision measure for each word as the percentage of words in the result cluster
which are cognates to the word according to the gold standard. B-Cubed precison
and recall are the averages of these clustering accuracy measures across words,
and the B-Cubed F-score is again the harmonic mean of B-Cubed precision and
recall. To make my results comparable to the recent literature on cognacy detec-
tion, I compute thesemeasures in addition to the pairwise performancemeasures
explained above.

The values of all six evaluation measures for the chosen threshold values are
given in Table 4.5. The numbers show an insignificant advantage of half a per-
centage point in B-Cubed F-score for LexStat, indicating that IWSA and LexStat
perform almost exactly equally well on IPA-encoded dictionary forms for intra-
family cognacy judgments. Note that this task is not the one my infrastructure

Table 4.5: Comparing cognate clustering performance on the intersec-
tion of IELex and NorthEuraLex

Pairwise B-Cubed
Method precision recall F-score precision recall F-score
IWD-0.45 0.927 0.429 0.586 0.887 0.518 0.654
LexStat-0.7 0.929 0.434 0.591 0.885 0.526 0.660
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is designed to be particularly good at, so that this evaluation merely shows that
on dictionary forms, my system keeps up with the state-of-the-art systems for
general cognate detection.

4.5.5 Evaluation on WOLD cross-family cognacy judgments

To conclusively demonstrate that the infrastructure presented in this chapter is
better than the current version of LingPy for the purposes of cross-family cognate
detection, a test set which includes cognacy judgments for a dataset which spans
multiple families would be necessary. Since such datasets do not currently exist,
evaluation must resort to the second-best option of complementing the family-
internal evaluation provided by IELex by an evaluation on at least some cognate
sets which range across family boundaries.

Fortunately, since cross-family cognates are invariably loanwords (except for
a few cases where deep connections are assumed), we can rely on an existing
rather comprehensive loanwords database which again has some overlap with
the NorthEuraLex data. The World Loanword Database (WOLD) was a major
data collection effort coordinated by Max Planck Institute for Evolutionary An-
thropology in Leipzig, the results of which are summarized in Tadmor (2009).
The database is available online (Haspelmath & Tadmor 2009), and was pub-
lished under a creative commons (CC-BY) license. It contains the realizations
of a list of 1460 concepts for a geographically well-balanced sample of 41 lan-
guages, and expert judgments on the loanword status for all these words, com-
pletewith information on the sources of borrowings.There are eight vocabularies
for languages also contained in NorthEuraLex 0.9: English (Grant 2009), Dutch
(van der Sijs 2009), Romanian (Schulte 2009b), Kildin Saami (Rießler 2009), Sakha
(Pakendorf & Novgorodov 2009), Japanese (Schmidt 2009a), Mandarin Chinese
(Wiebusch 2009), and Ket (Vajda & Nefedov 2009). Going through these WOLD
vocabularies and extracting all borrowings whose donor languages (or one of
their descendants containing reflexes of the same cognate set) are also contained
in NorthEuraLex, were not accompanied by a semantic change, and for which the
concept was covered by NorthEuraLex, resulted in an evaluation set of 414 loans
within NorthEuraLex, of which 214 were intra-family loans, and 200 occurred
across family boundaries. This test set is also available as part of the supplemen-
tary materials (see Appendix C), to my knowledge providing the first (if modest)
benchmark for cross-family cognate detection.

Ideally, we would expect each pair of cognates defined by such a borrowing
event to end up in one of the automatically inferred cognate sets. This is what
the comparison of the two systems on this dataset was based on. Again, the cog-
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nate sets inferred over NorthEuraLex were reduced to a list of pairwise cognacy
judgments. Since this dataset provides us with no indication which of the words
not affected by borrowing are cognates or not, we unfortunately cannot sensibly
compute precision values for this dataset. Instead, I will only rely on the recall
values in my evaluation. For a useful comparison, it would usually be a problem
if recall is not balanced against precision, but recall still provides meaningful in-
formation as long as I keep the parameters fixed, and do not further optimize
the system to the new dataset. Using exactly the same system with the threshold
values that I demonstrated to be on an equal footing with LingPy on the family-
internal cognate classification task, I evaluate whether it manages to detect a
higher proportion of cross-family loanwords.

Table 4.6 shows the results of the comparison. Since loans are phonetically
more similar than the reflexes of inherited cognates, it comes as no surprise that
the recall values are higher than in the previous experiment.The interesting find-
ing is in the comparion of intra-family and cross-family loans. In contrast to the
IELex data, there is a clear advantage for my system on intra-family loans, proba-
bly due to the fact that LexStat requires the existence of sound correspondences,
which are of course only partially adhered to by loanwords. The most signifi-
cant difference is visible in the cross-family loans. Here, LingPy recognizes less
than 60% of the cross-family loans as cognates, whereas my system recognizes
cognacy for almost 65% of pairs. The reason for the difference is that LingPy’s
infrastructure is dependent on the existence of regular sound correspondences,
which is not a problem if the task is to find true cognates within a single family,
as was the case in all datasets that LingPy has previously been evaluated on (List
et al. 2017). Taking the minimum of global and pair-specific phoneme distances
makes my system much more flexible in this regard, while still maintaining a
competitive performance for intra-family cognate detection.

The results indicate that while for the within-family cognacy detection task,
the systems show equal performance, my infrastructure seems clearly preferable
for preparing cross-family cognacy datasets, the essential preprocessing step for
cognacy-based lexical flow inference. In theory, my system might of course also

Table 4.6: Comparing cognacy judgments on cross-family loans from
the World Loanword Database (WOLD)

method recall on intra-family loans recall on cross-family loans
LexStat-0.7 0.768 0.594
IWD-0.45 0.888 0.645
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cluster together many more cross-family non-cognate pairs than LingPy, caus-
ing precision (which we have no way of measuring) to be much lower than for
LingPy, but I would consider that very unlikely given the very similar precision
values on the IELex data. Still, it will of course be worthwhile to revisit this issue
once larger fully annotated cross-family datasets become available, which would
require massive data collection efforts on an even larger scale than the WOLD
project.

4.5.6 A look at the cognate sets

To illustrate the quality of the results, and the type of data hidden behind every-
thing which is yet to follow, we inspect the NorthEuraLex data and the inferred
cognate sets for the concept fish in detail. Figure 4.10 contains the standardized
IPA representations for all of the NorthEuraLex languages, grouped into cognate
sets using UPGMA on my distance measure. I will use the given numbering from
1 to 38 to refer to the cognate sets in the discussion.

The largest inferred cognate set 27 correctly clusters a large number of Uralic
words, all of which derive fromProto-Uralic *kala. Note that the algorithm sucess-
fully detects the regular alternation between Western Uralic [k], Ob-Ugric [χ],
and Hungarian [h], as well as the large variety of diphthongs in the Saami re-
flexes. However, set 27 also contains a false positive: Aleut [qɑχ] actually belongs
together with Siberian Yupik [iqat͡ɬjuk] (set 37), both going back to Proto-Eskimo-
Aleut *iqaɬuɣ, which might actually be deeply related to the Uralic word accord-
ing to Fortescue (1998: footnote 51). This would make the inclusion of the Aleut
word in this cluster an instance of successful deep cognacy detection, although
of course the phonologically closer Yupik word is missing. The Udmurt form
[t͡ɕorɨɡ] in set 31 actually belongs to the other Permian forms in set 21, which
again erroneously includes the Chechen word [t͡ʃʼərə], an impressive instance of
chance similarity with Komi-Zyrian [t͡ɕeri]. Set 21 also includes the non-cognate,
but phonetically similar words from Ainu and Telugu.

The situation of the words for fish in Indo-European is much more compli-
cated than in Uralic. The most important set comprising the Western branches
of Indo-European, ultimately going back to a PIE form *pisḱ-, decomposes into
several sets (10, 13, 33, 34) in the automated clustering. The main problem is that
due to the one-to-one correspondence model, the bigram [sk] cannot be matched
to the single segment [ʃ] which it is reflected by in West Germanic (cluster 33,
with Ket [jiɕ] erroneously added due to the rhyme). The separate development
into [ʃ] in some Romance languages led to an additional cluster (set 34), which
cannot be integrated with cluster 33 due to the additional imperfect match be-
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1 gld: [sɔɡdata]
2 kor: [mulɡoɡi]
3 sah: [balɯk] tat: [balɤk] dar: [baliq] bak: [balɯq] chv: [pulə]

azj: [bɑlɯɡ] kaz: [bɑləq] uzn: [baliq] tur: [balɯk]
4 yux: [ɑnil]
5 slk: [riba] bul: [riba] ces: [rɪba] pol: [ɾɨba] ukr: [rɪbɑ]

bel: [rɨba] rus: [rɨbə] hrv: [riba] slv: [riiba]
6 eus: [arɑjn]
7 kal: [aalisaɣaq] ykg: [alʲʁa]
8 evn: [ollo]
9 heb: [daɡ]
10 fra: [pwasɔ̃] cym: [pəsɡɔd]
11 ket: [ʊʎdʲiɕ]
12 pes: [mɒɒhi] pbu: [mɑhaj] hin: [mətsj] mal: [matsjam]
13 oss: [kəsaɡ] bre: [pɛsk] isl: [fɪskʏr] gle: [ɪəsˠk] nor: [fɪsk]

sqi: [pɛʃk] dan: [fesɡ] lat: [pɪskɪs] swe: [fɪssk]
14 lit: [ʒʊʋʲɪs] lav: [zifs]
15 ava: [tt͡ʃuʕa]
16 ddo: [besuro]
17 hin: [mət͡ʃʰlii] ben: [mat͡ʃʰ]
18 hye: [d͡zuk]
19 kat: [tʰɛvzi]
20 bsk: [t͡ɕʰumɔ]
21 kpv: [t͡ɕeri] koi: [t͡ɕʲeri] che: [t͡ʃʼərə] tel: [t͡ɕeepʌ] ain: [t͡sep]
22 kmr: [masi] enf: [kari]
23 mnc: [nimaxa]
24 jpn: [sakana] arb: [samak]
25 ckt: [ənneen]
26 niv: [cʰo] cmn: [y]
27 mns: [χul] hun: [hɒl] sme: [kʊɔlli] sjd: [kuuʎʎ] sma: [kʉɛliɛ]

mrj: [kol] mdf: [kal] nio: [kolɨ] krl: [kɑlɑ] olo: [kɑlɑ]
fin: [kɑlɑ] sel: [qælɨ] ekk: [kɑlɑ] smj: [ɡʊuɔllɛ] yrk: [xɑʎɑ]
myv: [kal] vep: [kɑlɑ] mhr: [kol] liv: [kɑlɑɑ] smn: [kyeli]
kca: [χuɬ] ale: [qɑχ] sms: [kuɛllʲɘ]

28 pbu: [kab]
29 kan: [miinu] tam: [miin]
30 bua: [zaɡahaŋ] khk: [t͡saɢas] xal: [t͡saħsɐn]
31 udm: [t͡ɕorɨɡ] abk: [ɑpʰsɨd͡z]
32 itl: [əɲt͡ʃ]
33 deu: [fɪʃ] eng: [fɪʃ] nld: [vɪs] ket: [jiɕ]
34 por: [pejʃə] cat: [pɛʃ] ita: [peʃʃe] ron: [peʃte] spa: [peθ]
35 lbe: [t͡ʃawaq͡χ]
36 ell: [psari] ady: [pt͡saʐəj]
37 ess: [iqat͡ɬjuk]
38 lez: [ʁed]

Figure 4.10: Inferred cognate sets and NorthEuraLex forms for fish
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tween [p] and [f] in the first segment, although this is due to a regular sound
correspondence. Welsh [pəsɡɔd] in set 10 is indeed a loan from Romance, and is
thus not particularly close to its Irish equivalent [ɪəsˠk] in set 13.

Pokorny’s Eastern Indo-European root *ǵdʰū- is reflected in NorthEuraLex by
the Baltic words (set 14) and the Armenianword (set 18), whichwould thus form a
single cluster in an ideal result. However, this reconstruction is not uncontested,
so that it is equally acceptable for the words to form separate clusters. The Slavic
innovation *ryba (set 5) and the Indo-Iranian substrate word *mátsyas (sets 12
and 17) are reliably and correctly detected as outliers, although the latter set is
split in half due to an undetectable multi-segment sound change from Sanskrit
[tsj] (reflected by Hindi and Malayalam loans in set 12) to [t͡ʃʰ] in Prakrit and
the modern Indo-Aryan languages (set 17). Pashto [kab] (set 28) represents an
Eastern Iranian word that might also be reflected by Ossetian [kəsaɡ], which
was erroneously grouped together with the other Indo-European words in set 13,
due to the very similar second and third consonants.

Both the Turkic (set 3) and the Mongolic (set 30) words for fish are reliably
clustered together and correctly separated from all the other sets, due to very
regular sound correspondences bridging the sometimes highly divergent forms.
The inherited Dravidian word is detected correctly as well (set 29), and despite
the identical initial segment it is correctly not thrown together with the Indo-
Iranian word (set 12), even if the latter was additionally borrowed by Malayalam.

According to Nikolayev & Starostin (1994), Adyghe [pt͡saʐəj] (in set 36) and
Abkhaz [ɑpʰsɨd͡z] (in set 31) are both reflexes of a Proto-Northwest-Caucasian
*p:əšA, a relationship which is also quite apparent in the surface forms. To Niko-
layev and Starostin, who assume the existence of a North Caucasianmacrofamily,
the first part of Tsez [besuro] (set 16) also belongs to this set. Since a common de-
scent of the two language families is not generally accepted as proven, it appears
acceptable for the Tsez word to show up as a singleton set.

Coming to the Paleosiberian languages, Fortescue (2005) groups the Chukchi
word [ənneen] (set 25) and Itelmen [əɲt͡ʃ] (set 32) together as reflexes of Proto-
Chukotko-Kamchatkan *ənnə, making this pair of words a false negative. De-
ciding whether set 7, grouping Tundra Yukaghir [alʲʁa] with Greenlandic [aal-
isaɣaq], is acceptable requires some digging into the etymological literature, since
the forms are suspiciously similar, and ancient Yukaghir-Eskimo contacts are not
unlikely. According to Fortescue et al. (2010), however, the first two syllables of
the Greenlandic form go back to a Proto-Eskimo stem *aɣula- ‘to move’, whereas
Nikolaeva (2006: Lemma 1627) reconstructs Proto-Yukaghir *olʲoɣə in the mean-
ing of ‘fish’, excluding the possibility of a loan.

136



4.6 Deriving a gold standard for lexical flow

Unavoidably, there are a number of obvious false positives, typically sets of size
two which were clustered together due to some random partial similarity. The
instances I would count as such false positives are the sets containing Kurdish
and Enets (set 22), Japanese and Arabic (set 24), Udmurt and Abkhaz (set 31), as
well as Greek and Adyghe (set 36).

For the remaining singleton sets (1, 2, 4, 6, 8, 9, 11, 15, 19, 20, 23, 35, 38), I could
not find any indication in the etymological literature that some of these should
have been clustered together with any other set, so that these can be counted as
correct classifications.

From this example and the discussion, it should be obvious that automated
cognate clustering acrossmany language families, especially while avoiding false
positives, is a very challenging task for a computer if it is not given parts of the
expected result (family relationships) as part of the input. Many improvements
to the method could be made, like a model which would support multi-segment
correspondences, or more sophisticated clustering. Also, having a large portion
of the basic vocabulary at one’s disposal should make it easier to at least bring
some parts of the comparative method to bear on the task of automated cognate
detection. Still, it is also clear that despite the presence of noise, there is already
a lot of relevant signal even in the words for a single concept. Across 1,016 slices
of equal size and similar structure, the false positives will tend to be distributed
equally across language pairs, whereas an accumulation of true cognates will
make the true affiliations of languages clearly visible.

4.6 Deriving a gold standard for lexical flow

The obvious way to go about evaluating the network inference algorithms is to
check how well it concurs with previous knowledge about language contacts in
some linguistic regions. For this purpose, I will be using the cognate data derived
from NorthEuraLex, and focus on four linguistic areas of interest, which are dis-
cussed in detail. For the other NorthEuraLex languages, and the contacts between
them, research into the available literature was performed a little more superfi-
cially, resulting in a set of 205 language contacts among the 107 NorthEuraLex
languages and their ancestors. All the contacts which are part of the gold stan-
dard are given in Appendix A.3.
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4.6.1 Defining the gold standard

To define the gold standard, the best result we could hope to achieve on the
NorthEuraLex data, it was necessary to review literature on the history of all
the languages involved, and define a list of language contacts which are likely to
have had sufficient influence on the vocabulary covered by NorthEuraLex to still
be visible in the cognacy relations.

In principle, we can just decide for each pair of languages whether they have
a common ancestor (which would correspond to a ↔ edge), or whether there
has been lexical transfer between unrelated languages. As argued in the discus-
sion of the simulation model, for basic vocabulary lexical transfer will virtually
always have a dominant direction, giving rise to → edges in the gold standard.
Finally, there is the case of languages which belong to the same family (have a dis-
tant common cause), but have exchanged substantial amounts of lexical material
later in their development. The prime example case for this could be the relation
between English and French. Proto-Indo-European certainly qualifies as an un-
observed common cause for both languages (fra ↔ eng). However, the number
of such ancient cognates between the two languages which still have the same
meaning is quite low compared to the number of cognates both languages share
due to massive borrowing from French into English since the Norman conquest
(fra → eng). Faced with good reasons for accepting both arrow patterns, it seems
sensible to do just that during the evaluation. For this particular language pair,
it makes sense to accept as valid any ancestral graph with either fra ↔ eng or
fra → eng, which can be expressed by reusing PAG notation as fra ◦→ eng. Both
the absence of an edge between English and French and a wrongly directed edge
eng → fra would be counted as errors.

The difficult issue for defining a good gold standard is the treatment of lateral
connections between proto-languages, i.e. causal influences between the latent
variables. For instance, the influence of Proto-Baltic on Proto-Finnic might be-
come visible as a directed arc from any Baltic to any Finnic language. On some
level, it is wrong to state that Latvian influenced Veps (lav → vep), but the al-
ternative (lav ↔ vep), while technically more justified, is problematic as well,
because it blurs the distinction between ancient relationship and contact that
we would like our algorithms to detect. For this reason, I will collect contact
relationships between larger phylogenetic units (Eastern Baltic → Finnic), and
compile them out into statements connecting the attested languages (lav → vep,
lit → vep, lav → fin, lit → fin, …) for the contact flow evaluation. While this
makes it easy to evaluate precision (essentially, any directed contact from a Baltic
to a Finnic language is accepted as correct), it complicates the definition of recall.
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Do we expect each lexical transfer between proto-languages to be represented
as an arrow between one pair of descendant languages in the result? What if
due to further events on both involved families, the lexical transfer is barely vis-
ible in the observed languages? For the simulated data, we have a full model of
the ground truth, and can define precise threshold values to decide which an-
cient contacts we would expect to still be detectable. For the real data, this task
would amount to compiling full etymological information for the entire database,
which is a worthwhile long-term goal, but completely unfeasible for a single per-
son in a few years. Therefore, selection of contact events which we expect to find
represented has to build on aggregated statements about the amount of lexical in-
fluence in the literature, and estimates howwell the affected layers of the lexicon
are actually represented in the data. Moreover, all kinds of biases might be intro-
duced as a result of an uneven distribution of research effort, which can result
from all kinds of extralinguistic factors, from a very local bias like an individual
researcher’s aesthetic preferences to very global biases if, e.g. for political rea-
sons, it is easier for researchers from one country to get funding for work on the
contacts with one neighboring nation over another. My gold standard derived
from available literature might therefore well be incomplete, but it still contains
a large number of contact events which are so clearly visible in the data that any
automated system which tries to infer directional contact should be able to find
them.

In the linguistic overviews accompanying the four case studies using subsets
of NorthEuraLex which are described in the following sections, I will state each
contact event that is included in my overall gold standard for NorthEuraLex
(again available as part of the supplementary materials) in brackets after the
point which justifies it. For instance, English borrowed some basic vocabulary
from North Germanic during the Viking settlement (North Germanic ◦→ eng),
and was heavily influenced by French after the Norman conquest (fra ◦→ eng).
I also state the NorthEuraLex representatives of each phylogenetic unit the first
time I mention it, e.g. North Germanic (isl, nor, swe, dan).

4.6.2 Case study 1: The Baltic Sea area

The first case study on real data will deal with the languages around the Baltic
sea, which is a comparatively easy case because only two language families are in-
volved (Indo-European and Uralic), and almost all instances of language contact
occurred among neighbors, or across the sea, without migrations complicating
the picture. The linguistic history of the region is thus not very involved, but still
complex enough to provide some interesting test cases for lexical flow inference.
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The basic linguistic layout of the lands around the Baltic sea is that of a border
region where the Indo-European languages of central and eastern Europe meet
the westernmost Uralic languages. For a comprehensive overview of the linguis-
tic history of this region, the reader is referred to the volume on Circum-Baltic
languages as an areal grouping, edited by Dahl & Koptjevskaja-Tamm (2001),
from where some of the information in this overview is taken. Figure 4.11 visual-
izes the NorthEuraLex languages around the Baltic sea at their rough geographi-
cal coordinates, with the overlap in inferred cognate sets between each language
pair visualized by a line, which gets thicker and less transparent with the amount
of overlap.This cognacy strength visualization is a convenient way to summarize
the shape of the lexical flow inference problem.

bel
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eng
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nld
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Figure 4.11: Visualization of inferred cognate overlap in the Baltic Sea
data

On the Indo-European side, southern Scandinavia is the homeland of theNorth
Germanic languages (swe, dan, nor, isl), which have evolved from the Old Norse
of the Viking Age, whose Western dialect developed into the West Scandinavian
languages Icelandic (isl), Faroese, and Norwegian (nor), whereas the Eastern di-
alect gave rise to Danish (dan) and Swedish (swe). The position of Norwegian
in this genealogical tree is a little problematic, because Norwegian has a lot of
dialectal variation, and two quite different written standards. The Nynorsk stan-
dard can, with some justification, still be called a West Scandinavian language,
whereas the Bokmål variant represented in NorthEuraLex is much more similar
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to the East Scandinavian languages. As another native language of the region of
high historical significance, German (deu), which belongs to the West Germanic
branch, is also part of this case study. From a historical perspective, it would have
made more sense to include Low German instead of Standard High German, but
no variant of Low German is featured in NorthEuraLex so far.

The only Slavic languages with any relevance for the Baltic sea region are
Polish (pol) as well as Russian (rus) and closely related Belarusian (bel). The Slavs
originally settled a homeland somewhere in Eastern Poland or Western Ukraine,
and began their rapid expansion in all directions as late as 500 AD (Kobyliński
2005). In later centuries, when Russian had become the state language of a great
powerwithmajor strategic interests in the region, it started to exert a dominating
influence on all languages on the eastern coast of the Baltic sea as well (Décsy
1988). Smolicz & Radzik (2004) summarize how during its short history, literary
Belarusian has continually been remolded to be either lexically closer to Polish
(pol ◦→ bel) or to Russian (rus ◦→ bel) depending on the political situation, and
show that its present role, despite being the titular state language of Belarus, is
in many ways more similar to an endangered minority language.

The Baltic languages, which show somuch similarity with the Slavic languages
that a single Balto-Slavic branch of Indo-European is generally assumed, once
settled a large area north of the Slavs, but have since been gradually displaced by
expanding Germans and Slavs, except for two surviving languages of the Eastern
Baltic branch, Lithuanian (lit) and Latvian (lav), which are the national languages
of the respective modern states. Old Prussian, the ancient language of Prussia
which became extinct through replacement with German in the 18th century,
is the single relatively well attested Western Baltic language, but it cannot be
included in NorthEuraLex because information on only a fraction of the relevant
concepts is available.

According to Viitso (1998), the Finnic languages (fin, krl, olo, vep, ekk, liv)
form an ancient dialect continuum reaching around the Gulf of Finland, where
Finnish (fin) and Standard Estonian (ekk) became national languages during the
19th century, and others have survived as small minority languages of northwest-
ern Russia, predominantly in the Republic of Karelia. Of these smaller languages,
NorthEuraLex contains two written variants of Karelian (North Karelian krl and
Olonets Karelian olo), and the Veps language (vep). Moreover, NorthEuraLex con-
tains data for the recently extinct Livonian (liv) of Latvia.

The Saami languages (sma, smj, sme, smn, sms, sjd) form another ancient di-
alect continuum (Sammallahti 1988b) across northernmost Scandinavia, which is
conventionally split into at least ten languages, six of which have standardized lit-
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erary variants. Western Saami (sma, smj, sme) consists of Southern Saami (sma),
Lule Saami (smj), and Northern Saami (sme), which is by far the most thriving
of the Saami languages, and is becoming a lingua franca for all Saami speakers
due to its large number of speakers, the central position it takes in the dialect
continuum, and its state-sponsored role as a media and academic language. The
Eastern Saami languages (Inari Saami smn and Skolt Saami sms in Finland, as
well as Kildin Saami sjd on the Kola peninsula) are all severely endangered, with
only a few hundred speakers left for each of them.

As shown by Aikio (2006b), already the Nordic Bronze Age culture before 500
BC appears to have had intensive trade contacts with Finnic tribes in the Baltics,
and Saami tribes in Finland. During the early Middle Ages, when the Saami had
settled Northern Scandinavia, and Southern Finland had been colonized by the
Finns, these contacts intensified. After christianization, Swedish settlers started
to colonize parts of Finland’s coastal areas in the 12th century. The influx of set-
tlers continued into the times of the Northern Crusades, as a result of which
Western Finland became part of the Swedish state. Swedish as the language of
administration and education had a strong influence on the western dialects of
Finnish, which later became the basis for thewritten standard (swe → fin). At the
same time, Russian missionaries had started to spread the orthodox faith among
the Finnic tribes of the east, which both influenced the later national borders be-
tween Swedish Finland and Novgorod (and later Russia), and contributed to the
concept of separate Finnish and Karelian nationalities. The lexical impact of Rus-
sian on the Karelian dialects was of a similar nature as that of Swedish on Finnish
in the west (rus → krl, olo). According to Puura et al. (2013), Russian influence
on spoken Veps has been quite strong as well due to near-complete bilingual-
ism. In contrast, the recently published dictionaries such as Zajceva (2010) are
quite purist, which means that only very few Russian loans are visible in the
NorthEuraLex data for this language. This hints at a more general problem with
representingminority languages in lexical databases. Due to purist attitudes, Rus-
sian loans, even if they are the first words that come to mind for certain concepts,
will not be accepted as part of their language by dictionaries or native informants,
even though the words given instead might already have fallen out of actual use.

Zachrisson (2008) provides an overview of later interactions between North
Germanic peoples and the Saami. Since the late Middle Ages, when Saami lan-
guages were still spoken much further to the south, the development of the cen-
tralized Scandinavian nation states, and accompanying christianization, has been
causing the Saami population to assimilate, or migrate further to the north. For
centuries, the language policy of the Scandinavian nation states was to ban the
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use of Saami languages at school and in public life (Corson 1995), which has
led to intensive pressure of the North Germanic state languages on the Western
Saami languages (swe →Western Saami, nor →Western Saami). The same pat-
tern, along with its role as a trade language, has led to massive Finnish influence
on Northern Saami (fin ◦→ sme), Inari Saami (fin ◦→ smn), and, chiefly after
the Skolts’ resettlement during the aftermath of the Second World War (Feist
2011), on Skolt Saami (fin ◦→ sms). The Eastern Saami languages, which were
once spoken across Karelia, had previously been influenced (Sergejeva 2000) by
neighboring North Karelians (krl ◦→ Eastern Saami), and then of course by the
Russian state language (rus → sjd, sms).

Some of the earliest language contacts in the region occurred between Finnic
and Baltic tribes at a timewhen the Slavs had not yet expanded to the north. Suho-
nen (1988) lists a large number of ancient Baltic loans in the Finnic languages,
covering semantic fields such as basic tools and agriculture, many animal and
plant names, and female kinship terms (Baltic → Finnic). While the frequency
of Baltic loans is highest in Finnish, Estonian, and Olonets Karelian, this effect,
as Suhonen himself points out, might be simply due to the less well-developed
lexicography in the smaller Finnic languages. Moreover, Suhonen (1973) counts
more than 2,200 recent Latvian loans in the Livonian language (lav → liv), an
interesting case of overwhelming influence of a written majority language on
a barely written minority language, while the majority language is itself but a
regional minority language in a much larger state.

In Estonia and Latvia, Hanse traders and especially the crusaders of the Teu-
tonic Order, who founded their state in the Baltics in the 13th century, brought
the German language with them. As Rot (1988) demonstrates, German had an
enormous impact on the cultural vocabulary of both the Estonian language (deu
→ ekk) and then still widespread Livonian (deu → liv). Some of these words
were also borrowed into Latvian (deu ◦→ lav). Although both countries ended
up protestant after the reformation, the early missionary activities by the ortho-
dox church are still visible in the religious vocabularies of both languages, and
further influence of the dominant language during Imperial Russian and Soviet
times has left traces (rus → ekk, rus ◦→ lav).

Further to the south, Lithuanian was not influenced by German to the extent
that the other languages of the Baltics were, due to a separate statehood tradi-
tion which aligned Lithuanians more closely with Poland than with their other
neighbors. As Senn (1944) writes, 16th-century Lithuanian still showed quite a bit
of influence of Polish and German, but most of these loans were removed from
the language due to later purist attitudes, such that modern Lithuanian contains
almost no borrowings in its basic vocabulary.
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On the south coast of the Baltic sea, exchange between Germans and Slavs
has led to some mutual influence, which has left the basic vocabulary largely
untouched, however. Also, the more recent loans fromGerman into Polish do not
exceed a handful among the concepts covered by NorthEuraLex. The influence
of German on its much more closely related northern neighbors has been more
pronounced, with written German being a strong influence on the development
of all three modern written standard languages of Scandinavia (deu ◦→ dan, swe,
nor), while Icelandic stayed untouched by these developments due to its isolation.
During the centuries of Danish rule over Norway, the more widespread Bokmål
of the two competing written forms of Norwegian, was very much molded after
the model of Danish on every level (dan ◦→ nor), which is still visible in the fact
that it now resembles its East Scandinavian neighbors much more (to the point
of mutual intelligibility) than its West Scandinavian sister language Icelandic.

To summarize, Figure 4.12 visualizes the gold standard for phylogenetic lex-
ical flow inference on the dataset. The proto-languages are located roughly at
their reconstructed positions, with some modifications which had to be made for
readability. Inheritance relationships are visualized with black arrows, bidirec-
tional contact with light green lines (not in this case study), and unidirectional
contacts are shown as dark green arrows. Sometimes, some arrows will deviate
from the gold standard motivated in the text. In such cases, the deviating arrows
will represent the closest equivalent to a relevant contact where one of the proto-
languages was not present in the reduced tree.
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Figure 4.12: Gold standard for phylogenetic flow on Baltic Sea data
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4.6.3 Case study 2: Uralic and contact languages

The second case study expands our horizon eastwards, to the point that it in-
cludes the Uralic languages with all their contact neighbors. This leads to a fo-
cus on European Russia, Scandinavia, and Western Siberia. Hungarian as a ge-
ographic outlier requires us to additionally include some further languages of
Central and Eastern Europe, whereas the historical contacts of Uralic languages
in Central Russia with Turkic neighbors leads us to also include some of the
northern outliers of that family into the sample. We end up with a contact infer-
ence problem for a region stretching across 6,000 kilometers from west to east,
and more than 3,000 kilometers from north to south, all of which is covered rea-
sonably well by NorthEuraLex.

The Uralic language family consists of about 36 living languages (24 of which
are covered by NorthEuraLex), which fall into nine firmly established branches.
From west to east, these are Finnic, Saamic, Mordvinic, Mari, Permian, Hungar-
ian, Mansi, Khanty, and Samoyedic. The highly divergent Samoyedic languages
are traditionally seen as forming the primary split within Uralic, with all the
other branches being grouped together as Finno-Ugric. However, previously un-
detected cognates between Samoyedic languages and Eastern branches of Finno-
Ugric have recently been discovered (Aikio 2002; 2006a), which has considerably
increased the number of reconstructable roots of Proto-Uralic, and contributed to
a tendency to not necessarily assume this primary split to hold any longer. More-
over, a recent reanalysis of vowel correspondences (Häkkinen 2007) has yielded
some evidence that the primary split might have been between Finno-Permic
comprising the five western branches, and Ugro-Samoyedic on the other side,
which then split into the four eastern branches. For the purposes of this work,
the question of the internal structure of Uralic can be considered as open, and
we will simply assume a comb-like structure formed by all the safely established
branches.

The western branches Finnic and Saami were already described as part of the
linguistic background for the first case study. Considering their relationship with
the rest of Uralic, the Saami languages share so much lexical material with Finnic
that these two branches have traditionally tended to be seen as forming a sin-
gle Finno-Saamic phylogenetic unit. Ánte (2012) summarizes arguments for and
against a closer affinity. The main problem is that the two branches do not show
enough shared innovations in phonology to exclude ancient contacts as an expla-
nation for their considerable lexical overlap. However, there still are some shared
morphological innovations which are difficult to explain by contact alone.
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The Mordvinic languages (myv, mdf ) and the Mari languages (mhr, mrj), both
of which could also be treated as dialect continua with two written standards
each, have often been grouped together as the Volga-Fennic languages, but after
a reassessment by Bereczki (1988), this is now generally seen as a purely geo-
graphic grouping. Instead, as Grünthal (2007) shows, if Mordvinic is considered
part of a larger phylogenetic unit, it tends to be grouped together with Finnic
and Saamic on lexical grounds.

Further to the east, the Permian languages (kpv, koi, udm) form the last branch
of what some authors accept as the Finno-Permic branch of the Finno-Ugric lan-
guages. The Permian languages are closely related, with Udmurt (udm) in the
Republic of Udmurtia being the most divergent. With more than 300,000 speak-
ers, Udmurt is among the more viable minority languages of Russia. The other
branch of Permic is formed by the highly divergent dialects of the Komi language,
two of which are written languages. The 150,000 speakers of Komi-Zyrian (kpv)
are distributed across a wide area in the northeastern part of European Russia. It
is also one of the official languages in the Komi Republic, a very large territory
covering much of the area west of the northern half of the Ural mountains. Komi-
Permyak (koi), with little over 100,000 speakers, is the written standard for the
Komi-Permyak Okrug in the Perm Krai, the Russian region south of the Komi
Republic. The region around the Kama river where Udmurt and Komi-Permyak
are spoken today is currently considered the most likely candidate for a Uralic
urheimat (Häkkinen 2009), though alternative theories about a Siberian urheimat
remain justifiable if one still assumes Samoyedic to form the primary split. Pre-
vious theories placing the homeland farther into Europe were based on archeo-
logical continuity arguments, and are now considered obsolete due to their lack
of reliability (Häkkinen 2006).

In Western Siberia, the dialects of Khanty (kca) and Mansi (mns) have tradi-
tionally been grouped together as the Ob-Ugric languages, but the close affinity is
not accompanied by any shared innovations, and is therefore now seen by many
uralists, like Salminen (2002), as more likely due to intensive lexical contact (mns
◦→ kca and kca ◦→mns).TheMansi dialects are spoken by less than 1,000 people
in the western parts of the Khanty-Mansi Autonomous Okrug, which covers a
large part of the middle Ob and its tributaries east of the central Urals. Khanty di-
alects are still spoken by almost 10,000 speakers in the eastern parts of the okrug,
as well as neighboring areas to the north and east. Hungarian (hun) has been so
much reshaped by its intensive contacts with other language families during the
century-longmigration of its speakers, that it now appears to form a branch of its
own, although many isoglosses with the Ob-Ugric languages, particulary Mansi,
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do exist (such as the intensive use of verbal particles, highly unusual of Uralic),
causing it to be placed next to the Ob-Ugric languages in all proposals of larger
subunits. Lexically, the overlap with Khanty is stronger than that with Mansi,
which is generally attributed to mutual contact (kca ◦→ hun and hun ◦→ kca).

Finally, the four Samoyedic languages (yrk, enf, sel, nio) form the easternmost
branch of Uralic.The internal structure of this branch is not very clear. On lexical
grounds, the southernmost surviving language Selkup (sel) is clearly divergent
from its northern relatives, but according to many other criteria, the Nganasan
language (nio) on the remote Taimyr peninsula is clearly the outlier. Perhaps due
to its isolation, Nganasan is a very conservative language which shares some
striking features (consonant gradation, vowel harmony) with the westernmost
branch Finnic, hinting that these traits may have been present already at a very
early stage of Uralic. By far the most viable of the Samoyedic languages is Nenets
(yrk), whose Tundra variant with more than 20,000 speakers is spoken in the far
north on both sides of the Ural mountains. Closely related Enets, whose forest
variant (enf ) is represented in NorthEuraLex, was once spoken along the entire
lower Yenisei, but has been brought close to extinction under pressure of both
Tundra Nenets and Russian. Selkup is still spoken by about 1,000 people in the
region between Ob and Yenisei, and is the last surviving Southern Samoyedic
language, which once also included the now extinct Kamassian and Mator lan-
guages of the Sayan mountains west of Lake Baikal.

While the contacts between Western Uralic and Germanic or Baltic languages
in the Baltic sea region were already described in the preceding section, the com-
plex contact history of Hungarian (or Magyar) warrants some more detailed re-
marks. During their long migration from the Ural region (where the closest rel-
atives Khanty and Mansi still reside) to central Europe, a process which most
probably took about 2,000 years, Hungarian first had intensive contact with the
Permian languages (hun ◦→ Permian or Permian ◦→ hun). Leaving the area of
Uralic speakers on their way to the southwest, Hungarians next encountered
and were influenced by Iranian tribes (Iranian → hun), and later ended up un-
der Göktürk rule on the Black Sea, where Western Turkic languages became
the source of a lot of cultural vocabulary (Turkic → hun). After the collapse of
the Khazar empire, the Hungarians then undertook their final migration west-
ward, conquering and settling in the Carpathian Basin at the end of the ninth
century. Here, they acquired further strata of loans from both West Slavic and
South Slavic (West Slavic, South Slavic → hun), especially in the semantic fields
of agriculture and household items. German influence is especially visible in the
fields of military and engineering, whereas Latin provided the words for many
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religious and philosophical concepts. While the rapidly expanding Kingdom of
Hungary had Latin as its official language well into the 19th century, limiting the
influence of Hungarian on the Slavic minorities, Hungarian language policy dur-
ing the late stages of the Austro-Hungarian empire developed a strong tendency
towards Magyarization. This led to Hungarian influence especially on Croatian
and Slovak, although this is barely visible in the basic vocabulary. The same is
true for Turkish influence during the period of Ottoman rule in the 16th and 17th
centuries.

The other major historical influence on Uralic languages is caused by the di-
rect neighborhood of the Volga-Fennic and southern Permian languages with the
Turkic languages Chuvash (chv), Tatar (tat), and Bashkir (bak). In the case of the
Mari languages, the influences of neighboring Chuvash (chv →Mari) and Tatar
(tat →Mari) is the strongest. Among Permian languages, Udmurt has become
most influenced by its Turkic southern neighbors Tatar (tat → udm) and Bashkir
(bak → udm).These contacts, including layers of loans which have not hadmuch
influence on the basic vocabulary, are described extensively by Róna-Tas (1988).

After the initial splits, there has been some limited contact between neighbor-
ing branches of Uralic. According to Hausenberg (1998), Komi merchants caused
Komi-Zyrian to become an influential trade language of the north, with some
influence on Nenets (kpv ◦→ yrk) and Mansi (kpv ◦→mns), which is however
only barely visible in the basic vocabulary of these languages. In the east, Khanty
and Selkup have interacted quite intensively (kca ◦→ sel), and Enets was heav-
ily influenced through mixed marriages with the closely related and much more
vital Nenets community (yrk ◦→ enf ) before its few remaining speakers started
shifting towards Russian (Siegl 2013).

The pervasive development in all the Uralic minority languages, however, is a
shift towards Russian as the language of school and the workplace. While some
of these languages still have hundreds of thousands of speakers, in all cases the
speaker communities are dominated by the old people in rural areas, whereas
city life as well as mass culture and all modern economic activity takes place ex-
clusively in Russian. This very strong tendency puts the future of all the Uralic
minority languages very much into question, even more so as the current po-
litical climate tends to be hostile to any activities which can be interpreted as
fostering separatist tendencies within Russia (Taagepera 2013).

But Russian influence does of course reach back much farther than the intro-
duction of a comprehensive school system by the Soviets. Russian influence on
the lexicon is observable in all minority languages, but some languages (Kildin
Saami, Erzya, Hill Mari, Udmurt, Komi) show more Russian influence even in
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basic vocabulary than others which tend to be more purist at least in their writ-
ten variants (Moksha, Meadow Mari). The following contacts are reflected so
strongly in the basic vocabulary that they were added to the gold standard: rus
→ olo, vep, sjd, sms, myv, mrj, udm, koi, kpv, kca, mns, yrk, sel, enf, nio.

Among the languages which are included in this case study chiefly by virtue of
having been in contact with Hungarian, Romanian is a Romance language whose
lexicon was heavily influenced by surrounding Slavic languages (Slavic ◦→ ron).
According to Schulte (2009a), there are also traces of German (deu ◦→ ron) and
Hungarian (hun → ron) loans in the basic vocabulary. Outside the scope of this
case study, Romanian also contains a layer of ancient loans from Albanian or a
closely related language (sqi ◦→ ron), many loanwords from written Latin (lat
◦→ ron) as well as some from Greek (ell ◦→ ron). A substantial number of later
loans came from Turkish (tur → ron), and the words for many concepts of mod-
ern life were borrowed from French (fra ◦→ ron).

Figure 4.13 visualizes the cognacy overlaps between the Uralic languages and
their neighbors.The rather chaotic picture already indicates that this case study is
more of a challenge for lexical flow detection than the Baltic Sea study. The high-
est overlaps cluster the Western Uralic languages (Finnic and Saami) together.
Also, the Germanic and Slavic languages, the two Baltic languages as well as
the four Turkic languages clearly appear as clusters. The central and eastern
branches of Uralic are clearly least distinctive, mirroring the unclear second-level
structure of the family. Hungarian has overlaps of medium strength with many
Uralic languages as well as Slavic neighbors, making it a major challenge to de-
tect its affinity with the Ob-Ugric languages.

Figure 4.14 visualizes the ideal result of phylogenetic flow inference. Note that
some of the connections of Hungarian are light green lines, indicating that the
direction of influence is unclear, which makes an undirected arc in an automati-
cally inferred network just as acceptable as an arrow in either direction.

4.6.4 Case study 3: The linguistic landscape of Siberia

The next case study deals with inferring contacts between the languages of Sibe-
ria. Siberia is a sparsely populated region where many ancient language families
were able to survive until today, although all of the oldest languages have become
small minority languages on the verge of disappearing. The number of language
families in this test set is much larger than in the previous ones, and the high
number of isolates generates additional challenges to lexical flow inference.

The dominant influence of the colonial language Russian is of course visible
in every minority language of Siberia. Some languages show less influence in
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the basic vocabulary than others, however. For instance, Itelmen has borrowed
extensively from Russian even in its basic vocabulary, whereas pressure on re-
lated Chukchi was noticeably lower, most likely due to much later colonization
(early 18th vs. early 20th century).While Russian has borrowed somewords from
Turkic languages, this has not left measurable traces in the basic vocabulary, and
borrowings from other Siberian languages only occur in specialized areas of local
significance, such as reindeer herding, tent styles, and animal and plant names.

In western Siberia, the eastern branches of Uralic (mns, kca, sel, yrk, enf, nio)
have interacted with each other as well as Siberian languages to varying degrees.
The influences of Khanty on Selkup (kca ◦→ sel) and of Nenets on Enets (yrk
◦→ enf ) were already discussed, as were thewestern contacts of the Ket language.
Concerning influences on Uralic from the east, Samoyedic has borrowed a few
dozen words from Early Turkic (Turkic → Samoyedic), which are summarized by
Dybo (2007). Also, Anikin & Helimskij (2007) list substantial numbers of loans
from Tungusic into Samoyedic (Tungusic → Samoyedic).

All three language families (Turkic, Mongolic, and Tungusic) which are sub-
sumed as Core Altaic by advocates of a deep relationship, play major roles in
the linguistic landscape of Siberia. While the exact relationship between these
three well-established families (whose typological similarities are indeed quite
striking) is an eternal bone of contention, it is clear that even if there were no an-
cestral relationship, the three proto-languages must have been in very intensive
and long-lasting contact with each other. During recorded history, the Turkic
languages have formed the westernmost of the three families (starting out in the
Altai region), theMongolic languages have been in the center (Mongolia and adja-
cent areas), and the Tungusic tribes originally settled in the east (Manchuria).The
contemporary distribution pattern still shows this general tendency, but has been
complicated by many migrations of these highly mobile nomadic peoples. For in-
stance, the westernmost Mongolic language Kalmyk (xal) is spoken in Kalmykia,
a republic in European Russia, whereas the easternmost Turkic language Sakha
(sah) is spoken in the Sakha republic (also called Yakutia) which covers a large
part of Eastern Siberia. Tungusic peoples have spread throughout Siberia, with
the westernmost speakers of Evenki (evn) neighboring the Kets on the Yenisei,
and the Manchu (mnc) in the south at one point conquering China and becoming
the ruling elite of Qing, the last imperial dynasty of China.

Turkic languages (tur, azj, tat, bak, kaz, uzn, sah, chv) are present throughout
Russia, the Caucasus, Central Asia, Northern Iran, and Turkey. The following
summary is based on the handbook of Turkic languages edited by Johanson &
Csató (1998), with some additional information from Menges (1995). In genealog-
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ical terms, the Oghur subbranch, to which the Chuvash language (chv) of Eu-
ropean Russia belongs, is a clear outlier, with at least 2,000 years of separate
development, which puts the date of the latest stage of Proto-Turkic at about 500
BC. The Chuvash language is closely related to the extinct languages of the Bul-
gars and Khazars, and some scholars consider it likely that the Hunnic language
was Oghur Turkic as well.

The rest of Turkic, also called Common Turkic, forms a much closer genealogi-
cal unit, which probably still formed a single dialect continuum in 550 AD, when
the Turkic expansion set in. This is also the date of the first written records in a
Turkic language, the Orkhon inscriptions of the Göktürk khaganate. During the
Turkic expansion in the 6th-11th centuries, Common Turkic separated into five
branches, four of which are represented in NorthEuraLex.

Themajor Oghuz Turkic languages are Turkish (tur), Azeri or Azerbaijani (azj),
and Turkmen. The Oghuz tribes arrived in Central Asia during the 8th century,
formed a new warrior elite governing older Iranian states, and then started to
spread to the southwest in the 11th century, founding the Seljuk Empire and
invading Anatolia, where they later formed the Ottoman Empire and modern
Turkey.

The Kipchak tribes spread to the northwest, their farthest outliers in the Ural
region mixing with the local population and separating into Bashkir (bak) and
Tatar (tat), whose contacts we already discussed when covering Uralic and its
neighbors. Most Turkic languages of the North Caucasus belong to the Cuman
branch of Kipchak, others to the Nogai branch, which also includes the Kazakh
(kaz) language. Finally, Kyrgyz and some related smaller languages form another
branch of Kipchak.

The Karluk tribes migrated to the southeast, came into intensive contact with
Islam, and played a big role in the politics of China, before becoming the ruling
class of the Timurid empire. The Karluks later gave rise to the modern Uzbek
(uzn) and Uyghur ethnicities.

The final direction, the northeast, led some Turkic tribes into Siberia, where
most (such as the Tuvans andChulyms) stayed near theAltaimountains, whereas
one tribe migrated far to the north and became the Sakha or Yakuts, now the tit-
ular nation of the Russian federal subject which is largest in area, the Sakha Re-
public, which covers more than 3million square kilometers, and where the Sakha
language (sah) is still spoken by 400,000 people, about 40% of the population.

The final branch of Common Turkic, Arghu, only consists of Khaladj, a minor-
ity language of 40,000 speakers in central Iran, which lets it fall outside the scope
of a comprehensive lexical database of Northern Eurasia.

153



4 Wordlists, cognate sets, and test data

Only two of the Turkic languages in NorthEuraLex, Kazakh and Sakha, are
relevant for the Siberian case study. Spread across the steppe zone directly to
the south of Western Siberia, the Kazakhs were in intensive contact with Mon-
golian tribes, and borrowed many words for military and administrative terms
from them (Mongolic → kaz). Sakha (sah) is the only Siberian Turkic language
currently represented in NorthEuraLex, but by far the one which has had most
influence on the linguistic history of Siberia. Sakha contains some lexical mate-
rial borrowed from its Mongolic southern neighbors (bua, xal → sah), whereas
a lot of the vocabulary of modern life was taken over from Russian (rus → sah).

The Mongolic languages (khk, bua, xal) are concentrated in Mongolia and
neighboring regions of Russia and China. A very comprehensive overview of the
family is given by Janhunen (2003), which is alsomymain source aboutMongolic
languages. As a language family, the time depth of Mongolic is not very high, as
all the living and attested languages are descended from dialects of Middle Mon-
gol, the language of the Mongol Empire in the 13th century. The most divergent
Mongolic language, the probably now extinct Moghol language of Afghanistan,
is actually a remnant of one of Genghis Khan’s armies which was stationed there
during those times.The other outlier is the Daur language of Inner Mongolia and
neighboring provinces of China, which is already very close (50% lexical overlap)
to Khalkha Mongolian. The remainder of the language family is split into two di-
alect continua. Southern Mongolic contains several minority languages of North-
ern China, some of them (Mongguor, Dongxiang) with hundreds of thousands of
speakers, whereas the larger dialect cluster, Central Mongolic, which covers the
northern half of the language family’s area, subsumes about 80% of all speakers
of Mongolic languages. Since documentation of all smaller Mongolic languages
exists mostly in Chinese and is difficult to come by, NorthEuraLex currently only
contains three variants of Central Mongolian, with very different and interesting
contact histories.

Khalkha Mongolian (khk), the national language of the Republic of Mongolia,
is by far the most stable of all Mongolic languages, partly at the cost of other
Central Mongolian languages which only count as dialects of the national lan-
guage. While being rather purist in recent times, Khalkha Mongolian has small
layers of loanwords from Old Turkic (Turkic → khk), Sanskrit, Persian, Arabic,
Tungusic, and Chinese, most of which do not involve the most basic vocabulary,
and a large layer of recent Russian loans (rus → khk) for scientific and techni-
cal vocabulary. Dialects subsumed under the name Buryat (bua) are spoken in
Southern Siberia, Eastern Mongolia, and adjacent areas of China. The variant
included in NorthEuraLex is based on Russian sources, and therefore includes
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many loanwords from Russian (rus → bua). The Buryats, the most populous in-
digenous nation of Siberia at the beginning of Russian conquest, have exerted
considerable cultural influence on many of the neighboring peoples, especially
Sakha and the Tungusic languages. Kalmyk (xal) is a written variant of Oirat, a
group of Mongolic dialects of limited mutual intelligibility with Khalkha whose
360,000 speakers are spread throughout the westernmost parts of Mongolia, Xin-
jiang, Kyrgyzstan, and Kalmykia on the lower Volga. During their expansion,
the Oirats often formed federations with Kipchak tribes, from whom they bor-
rowed quite a bit of cultural vocabulary (Kipchak → xal). The remaining Oirat
communities seem to be in the process of losing their ancestral language, and
even the official language of Kalmykia, with some 80,000 speakers left, is only
spoken fluently by the elderly, ever since the transmission of Kalmyk culture to
the younger generations was interrupted by Stalin’s deportations, which led to
the demise of a substantial part of the Kalmyk population, and left heavy traces
on their language (rus → xal).

The Tungusic languages (evn, gld, mnc), though covering a very large geo-
graphical area, are thinly dispersed and under threat. A compact overview of the
Tungusic languages and their current situation is given by Janhunen (2005). Xibo,
the largest surviving Tungusic language by number of speakers, and one of only
two languages which are still learnt by children, is spoken by the descendants of
a single tribe which was deployed to the border by the Qing government. Due to
a lack of accessible resources on Xibo, the closely related and well-documented
Manchu language (mnc), the national language of the Qing dynasty, which now
only has a handful of elderly speakers left, was chosen to represent this branch
of Tungusic. The Manchu of the written sources contains many loanwords from
Chinese (cmn →mnc) and Mongolian (khk →mnc).

The second branch of Southern Tungusic is dominated by Nanai (gld), still spo-
ken by about 1,400 speakers, less than 10% of ethnic Nanai on both sides of the
Chinese-Russian border. The core of the language community is formed by three
almost exclusively Nanai villages in the Khabarovsk Krai. Like most other mi-
nority languages, it remains in daily use only among elderly speakers, whereas
the younger generations have switched to Russian. The Nanai language has bor-
rowed from Chinese and from Russian (cmn, rus → gld), but also shares some
lexical items with Mongolic languages, probably due to borrowing (bua → gld),
since the shared vocabulary contains items beyond those reconstructed even by
advocates of common inheritance.

While Evenki (evn), the largest Northern Tungusic language, still has some
30,000 speakers, due to its very wide geographical dispersal across much of East-
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ern Siberia and Manchuria it has split into many very divergent dialects, and its
speakers tend to live in mixed-language settlements where they almost always
form a minority. For this reason, Evenki speakers in Siberia today tend to not
only prefer Russian for communication, but are often able to communicate with
their non-Russian neighbors (Sakha, Buryat) in their respective languages. The
Evenki lexicon, depending on the dialect, contains strong influences from Rus-
sian (rus → evn), Sakha (sah → evn), and Buryat (bua → evn).

The oldest language families still present in Siberia (all of which nowmarginal-
ized and severely endangered) are grouped together as the Paleosiberian lan-
guages, a convenience term without any grounding in phylogeny. From a com-
parative point of view, they can be split into not fewer than five small language
families and isolates. From northwest to southeast, these families are Yeniseian,
Yukaghir, Chukotko-Kamchatkan, Nivkh, and Ainu.

In central Siberia, the Ket language (ket) is the last surviving Yeniseian lan-
guage, whose relatives were once spoken along most of the river Yenisei. Ket is
typologically vastly different from all other Siberian languages, in being a tonal
as well as a predominantly prefixing language, and featuring an extremely com-
plex verbal morphology that is more similar in structure to many North Amer-
ican languages than to anything in the Old World (except perhaps Northwest
Caucasian). According to Vajda (2009), before the relatively recent and limited
influence of Russian (rus → ket), which set in so late that it mostly resulted in
language shift, there were contacts with the Samoyeds to the east (predominantly
the Selkups, from which the Ket took the reindeer terminology), the Evenki to
the east, and to a much smaller extent with Turkic tribes to the south. However,
most of these contacts were hostile, and only led to a bare minimum of lexi-
cal material being transferred. Among the NorthEuraLex languages contained
in the WOLD, Ket is the language with the lowest overall borrowing rate, at
9.7% of the investigated part of the lexicon. This reflects the fact that, as Vajda
explains, the Ket culture with their hunter-gatherer economy only managed to
survive in central Siberia until today because the mosquito-infested marshlands
make it impossible to keep even reindeer in the upper Yenisei region, making
their homeland entirely unattractive for conquest and colonization. This limited
the intensity of language contacts until Soviet times, when collectivization and
the boarding school system caused the traditional lifestyle to disappear, and the
dominance of Russian as the school language caused the number of Ket speakers
to dwindle, with as little as 100 speakers left in 2008.

Much further to the east, we can find the last remnants of the Yukaghir lan-
guage family (ykg, yux) which in precolonial times still covered a large area be-
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tween the Lena andAnadyr rivers, but is now reduced to two isolated pockets of a
few dozen elderly speakers on the eastern border of the Sakha republic.Themore
northerly of the two surviving varieties, Tundra Yukaghir (ykg), is reasonably
well-documented, whereas Kolyma Yukaghir (yux), forming the southern end
of an ancient dialect continuum and not mutually intelligible with the Tundra
variant, has only recently seen systematic documentation efforts, culminating in
the first full grammar by Maslova (2003). Reconstructed Proto-Yukaghir shows
some overlap in basic vocabulary with Uralic languages, which is predominantly
taken as a very early loanword layer from Proto-Uralic (or a predecessor spo-
ken in Siberia). According to an analysis by Häkkinen (2012), this layer of about
50 loanwords can be separated into an older (Pre-Proto-Uralic) and a younger
(Proto-Uralic) layer. For simplicity, and because I will not be attempting to move
beyond established families, these early contacts are reflected by a single arrow
Uralic → Yukaghir in the gold standard. In the less basic vocabulary, an addi-
tional layer of about 30 later loans from Samoyedic increases the impression of
deep affinity, but is not visible in the NorthEuraLex data. The Yukaghirs are sus-
pected to have been the original inhabitants of an even larger area, which were
then gradually displaced by three consecutive waves of migration. The Tungusic
peoples were the first to introduce reindeer as mounts and pack animals into the
region, allowing them to hunt more efficiently, and forcing the Yukaghir hunter-
gatherers further to the north (evn → Yukaghir). As described by Menges (1995:
p. 52), the Turkic Sakha people were the next to move northward, introducing
horses, metalworking and a limited form of agriculture to what is now the Sakha
republic (sah → Yukaghir). Easily taking control of the few attractive pastures,
they marginalized the sparse Evenki population, who in turn took additional ter-
ritory from the Yukaghirs, forcing them to evade even further to the northeast.
Finally, Viires & Vahtre (1993) describe how Russian colonization (rus → ykg,
yux) with tribute demands, hostage taking and the spread of diseases, drasti-
cally worsened the living conditions for all native peoples, bringing the already
marginalized Yukaghirs close to extinction. The younger generations of surviv-
ing ethnic Yukaghirs have shifted completely to Russian and/or Sakha.

The largest Paleosiberian language family is Chukotko-Kamchatkan (ckt, itl),
whose speakers form the indigenous population of easternmost Siberia, from
Chukotka in the extreme northeast to the Kamchatka peninsula in the south.
Being polysynthetic languages, they are typologically similar (but not provably
related) to neighboring Eskimo-Aleut.The Kamchatkan branch of the family con-
sists of the single moribund language Itelmen (itl), and diverges a lot from the
northern branch Chukotkan, which consists of Chukchi (ckt) and three further
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languages which are so similar to Chukchi that they could be considered dialects
of a single language. While severely endangered like all Paleosiberian languages,
Chukchi with almost 7,000 speakers has by far the highest chances of survival,
although according to Dunn (2000), the newly created written standard variant
is at odds with some important cultural traditions, with negative impacts on the
language’s viability. The Chukotko-Kamchatkan languages show some ancient
lexical influences from Eskimo-Aleut (Eskimo-Aleut →Chukotko-Kamchatkan),
and also some from Yukaghir, although the latter largely concern reindeer herd-
ing and climate-specific terminology, and both are barely visible in the basic
vocabulary (Volodin & Skorik 1997). Russian influence has only recently become
dominant due to mixed marriages and its pervasive role in economic life, after
the Chukchis had successfully resisted colonization during the centuries before.
In contrast, Itelmen has been under massive Russian influence for several genera-
tions (rus → itl), and has even borrowedmany functional elements in a situation
of complete bilingualism (Viires & Vahtre 1993).

The Nivkh language (niv) was once spoken across the Lower Amur and North-
ern Sakhalin, and is still spoken by about 200 elderly people distributed across
dozens of villages in the area. The language of this people of fishermen and
hunters shows some typological similarities with Chukotko-Kamchatkan, and
some overlap in basic vocabulary with all of the neighboring languages, but too
little to show regular sound correspondences, leaving conservative scholars no
choice but to classify the language as an isolate. An overview of the language is
given byGruzdeva (1998).Throughout their history (which does not seem to have
involved any migrations for thousands of years), the Nivkhs were influenced cul-
turally by neighboring Tungus peoples, especially the Nanai (gld → niv). Some
lexical overlap with the neighouring Ainu dialects can be observed as well, hint-
ing at intensive ancient contacts, but it is not always clear in which direction
the words were borrowed. All the words for concepts which are not immediately
relevant to the traditional lifestyle, including everything concerning agriculture,
were only recently borrowed from Russian (rus → niv), which has completely re-
placed the ancient language in the younger generations, although the size of the
ethnic population has remained stable at about 5,000 people since the beginning
of colonization.

The Ainu (ain) language of Hokkaido and historically Sakhalin is another iso-
late which is sometimes counted as a Paleosiberian language. Descending from
an indigenous population which probably once settled much of northern Japan,
only the Hokkaido dialect has barely survived into our time, with fewer than
ten elderly speakers remaining. Ainu shows some lexical overlap with its north-
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ern neighbor Nivkh (probably ain → niv), and has borrowed massively from
Japanese (jpn → ain) during the past two millennia. While there has also been
some lexical influence of Ainu on Japanese (Schmidt 2009b), this was mostly re-
stricted to local animal names, and will not become visible in the set of concepts
covered by NorthEuraLex.

Korean (kor), the southern neighbor of Nivkh and the Tungusic languages, is
still widely considered an isolate. However, as summarized by Beckwith (2005),
it can also be seen as forming a Koreanic family together with some very sparsely
attested languages that were spoken in 7th-century Korea and do not seem to be
directly ancestral to Modern Korean. These include the language of the kingdom
of Silla as well as one of two languages spoken in the kingdom of Paekche, the
other being related to the language of Koguryŏ, whose genetic affinity is con-
tested. The most popular proposals for deep genetic affinity of the Koreanic lan-
guages include Japanese (which is typologically extremely similar, although this
can be explained by contact), and the Altaic languages, especially Mongolic and
Tungusic. There are definitely correlates with both Mongolic and Tungusic in
the basic vocabulary, but they are difficult to distinguish from possible borrow-
ings. Janhunen (1996) reconstructs a shared homeland of the three families in
Manchuria, and explains the similarities as due to intensive contact between the
three proto-languages. For the purposes of the gold standard, I will assume that
all shared material with Mongolic and Tungusic is due to ancient contact (Mon-
golic, Tungusic → kor). The more relevant source of similarity is Chinese, repre-
sented in NorthEuraLex by Mandarin Chinese (cmn), because this language con-
stitutes a very strong common source of vocabulary throughout the sinosphere,
i.e. all cultures which were strongly influenced by China during their history. In
our dataset, Chinese constitutes a very strong common cause which will lead to
very much material being shared between Korean and Japanese. Equating the
Middle Chinese of the period with modern Mandarin Chinese is very problem-
atic, and will lead to cognates not being recognized due to the massive phonetic
changes defining Mandarin. Still, since the pronunciation of Middle Chinese can
only be reconstructed, and has been with the help of Korean and Japanese, this
real source of loanwords cannot be included in a lexical database which is based
on verifiable data. I therefore add cmn → kor and cmn → jpn to the gold stan-
dard, knowing that Mandarin Chinese is unlikely to explain the lexical overlap
due to Chinese well enough. Loanwords in modern (southern) Korean, in addi-
tion to a very large layer of loans from Chinese (more than 50% of the lexicon,
or roughly comparable to the Romance influence on English), are predominantly
due to a strong recent influence of English (eng → kor).
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Japanese (jpn), though technically not an isolate (because the Ryukyuan lan-
guages are other descendants of Old Japanese), can be treated as such for the
purposes of our case study. If arguments for deep relationships to other language
families are made, these will typically tend to group Japanese together with Ko-
reanic (e.g. Martin 1966), or more recently Austronesian (e.g. Murayama 1976),
which is outside the scope of our dataset. More importantly, the Chinese influ-
ence during the century-long period of Chinese innovations spreading into Japan
was considerable, albeit to a slightly smaller degree than with Korean. According
to Schmidt (2009b), later influences on Japanese include Portuguese in the 16th
century, and Dutch during the long isolationist Edo period, both of which have
only left a handful of words within the scope of NorthEuraLex. Finally, there has
been a massive influence of English since 1945 (eng → jpn), from which most
words for the modern material culture continue to be taken.

In the extreme east, we also add some Eskimo-Aleut languages (ess, ale) to the
language sample. Since Siberian Yupik (ess) is spoken in villages on the coast of
Chukotka, this language family qualifies as a Siberian family, although it mainly
covers the northernmost parts of North America. Like Chukotko-Kamchatkan,
the family is split into a highly divergent branch consisting of a single language
(Aleut ale), and a rather close-knit larger branch. This larger branch consists of
the Yupik languages (ess) of the Alaskan coast (plus the aforementioned villages
on Chukotka), as well as a dialect continuum of Inuit languages (kal), of which
Greenlandic or Kalaallisut (kal) forms one extreme point, and which includes,
among many others, the Inuktitut and Inupiaq languages of the Canadian Arc-
tic. In contrast with Standard Chukchi, Siberian Yupik and Aleut show lexical
traces of Russian colonization (rus → ale, ess). In a similar way, Greenlandic has
borrowed quite a few words from the colonial language Danish (dan → kal),
including words for numbers beyond twelve, and the names of many imported
animals, plants, and European household items. Since there is no connection of
this contact to the Siberian case study, it is only part of the global gold standard.

With somany small language families in a comparatively small area (at least in
terms of maximum sustainable population), suggestions for larger phylogenetic
units in the area abound. One of the more promising possible deep relationships
is that between Uralic and Yukaghir, which has been discussed ever since any
substantial material on Yukaghir has become available. The hypothesis was al-
ready considered proven by Collinder (1940), and continues to be enhanced by
new evidence, e.g. by Piispanen (2013). Recent work by other researchers such as
Aikio (2014) remains highly critical of these suggestions, as it is very difficult to
exclude early loans as an explanation for the similarities. As the gold standard,
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I take the analysis in terms of loanword layers by Häkkinen (2012), thereby not
assuming any commonly inherited lexical material.

A suggestionwhich seems very plausible, and is already accepted bymany spe-
cialists for the languages involved, is the Dené-Yeniseian family proposed by Va-
jda (2010). This family links Ket and the Yeniseian languages in central Siberia to
the Na-Dené languages of central Alaska and northwestern Canada, whose most
prominent members are, however, the Navajo language and other Apachean lan-
guages of Arizona and NewMexico. Since North American languages are outside
the scope of NorthEuraLex, this possible deep relationship is not an issue for this
case study, so that we can treat Ket as an isolate.

The most far-reaching deep ancestral connections are proposed by Michael D.
Fortescue, an expert in Chukotko-Kamchatkan and Eskimo-Aleut, who authored
etymological dictionaries for both of these families. Unlike earlier hypotheses
based on typological grounds, Fortescue rejects a possible deep connection be-
tween Chukotko-Kamchatkan and Eskimo-Aleut. Instead, Fortescue (2011) sug-
gests a possible link of Chukotko-Kamchatkan with Nivkh, and recent articles
like Fortescue (2016) provide arguments in favor of an Eskimo-Uralic macrofam-
ily, first proposed by Bergsland (1959), which remains unproven but continues to
attract attention. All of these proposals rely on so little lexical material that one
cannot expect any of these possible deep connections to show up in lexical flow
models.

Figure 4.15 shows the cognacy overlaps in Siberia. While the partition into
language families is quite clearly visible, there are some disturbing star-shaped
patterns stretching from languages such as Aleut, Yupik, and Itelmen across all of
Siberia. These overlaps are of course only due to shared loanwords from Russian,
and need to be explained away by the network inference algorithm.

Figure 4.16 visualizes the gold standard network arising from the previous dis-
cussion. The star shape of arrows from Russian into almost all the languages of
Siberia show that unlike in the previous two case studies, we now only have
one major cause of lexical overlap between the many small families and isolates.
The challenge in this case study is the correct detection of the many isolates. For
reasons which will become clear in the next chapter, the directionality of influ-
ence between an isolate and a member of a different family is difficult to detect
for causal inference. The directionality of contacts between isolates has always
been a problem for historical linguists, and we cannot expect the less refined
automated methods to solve it.
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4.6.5 Case study 4: A visit to the Caucasus

The Caucasus is by far the linguistically most complex region covered by the
NorthEuraLex database. In addition to three indigenous language families, many
Turkic languages, several branches of Indo-European (Iranian, Armenian, and
Slavic), and even a Mongolic language (Kalmyk) exist in the region. The Cau-
casus has been famous for its high density of widely divergent languages since
antiquity, receiving the very fitting epithet ǧabal al-alsun ‘mountain of tongues’
by the Arab geographer al-Mas‘udi in the 10th century.

Starting out with the indigenous families, the Abkhazo-Adyghean or North-
west Caucasian languages (abk, ady) are a small group of four living languages,
which fall into the two primary branches Abkhaz-Abaza, consisting of Abkhaz
(abk) and closely related Abaza, and the Circassian dialect continuum, with the
literary languages Adyghe (ady) in the west, and Kabardian in the east. Both
branches are only represented by a single language in the current version of
NorthEuraLex, such that Abkhaz-Abaza will be synonymous with abk, and Cir-
cassian with ady. The Northwest Caucasian languages are typological outliers in
Europe, with their predominantly ergative case alignment, phoneme inventories
which are very rich in consonants but with minimal numbers of vowels, and, per-
haps most interestingly, a very complex verbal morphology where verbs agree
with up to three arguments, instead of just the subject, as is the case in typical
European languages. According to Hewitt (2004), both languages in our sample
have borrowed somewords fromTurkic languages.The dominant influence, how-
ever, occurred after the Russian conquest of the Caucasus (rus → abk, ady). In
addition, Abkhaz has come under significant pressure by Georgian (kat → abk)
as the state language of the Georgian SSR. This pressure has subsided since inde-
pendent Georgia lost control of Abkhazia after a civil war in 1992, which is now
a de-facto independent state without international recognition.

The Nakho-Daghestanian or Northeast Caucasian languages (che, ava, lez, dar,
lak, ddo) are spoken mainly in the Russian republics of Daghestan, Chechnya,
and Ingushetia. The family is well-known for featuring the world’s most exten-
sive case systems, and the largest noun class systems after the Bantu languages.
NorthEuraLex contains a sample of six Northeast Caucasian languages, falling
short of the goal of having one representative on each branch, but containing all
the literary languages forwhich large dictionaries are readily available.The about
40 languages of the family can be grouped into seven uncontested branches, but
the structure of the larger subunits is still subject to debate, much as in the case
of Uralic. Traditionally, the family was split into a Nakh branch containing the
closely related literary languages Chechen (che) and Ingush, and a Daghestanian
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branch comprising all the other branches. Among the languages of Daghestan, a
general consensus seems to be that the Avar-Andic languages, to which the lin-
gua franca Avar (ava) belongs, are more closely related to the Tsezic languages,
which are represented in NorthEuraLex by Tsez (ddo), than to the other branches
of Nakho-Daghestanian. The other Daghestanian branches are the Dargin lan-
guages represented by Literary Dargwa (dar), the Lezgic languages represented
by Lezgian (lez), and the isolates Lak (lak) and Khinalugh, the latter of which is
not part of NorthEuraLex. While Tsez and many other small Daghestanian lan-
guages are endangered, the five large literary languages in our sample can be
considered sociolinguistically stable, even though bilingualism with Russian is
by now almost universal (Hewitt 2004). During their history, all Northeast Cau-
casian languages have borrowed substantial amounts of lexical material from
Persian, Oghuz Turkic, and Russian, the languages of neighboring empires vying
for control of the Caucasus (rus, pes, azj → che, ava, lez, dar, lak, ddo). Influence
from smaller Turkic languages such as Kumyk and Nogai has also existed for
centuries. Due to the close similarity of these languages with Azeri in their basic
vocabulary, most of these influences can be subsumed under the incoming lexi-
cal flow from Azeri, although some signal will be lost due to the absence of these
Turkic languages of the Caucasus in our sample. Finally, Avar has influenced the
other languages of Daghestan due to its role as a lingua franca of the region (ava
◦→ lez, dar, lak, ddo).

The third language family native to the Caucasus, Kartvelian or South Cau-
casian, consists of the Georgian language (kat), the only indigenous Caucasian
language with an ancient literary tradition, three closely related minority lan-
guages which are often treated as variants of Georgian, and more distantly re-
lated Svan, all of which are not yet represented in NorthEuraLex. Like most
languages in the region, Georgian was influenced intensively by Persian (pes
→ kat) and Turkic languages (azj → kat). Russian influence on basic vocab-
ulary is rather limited in comparison, because Georgian was influenced much
more from its southern neighbors when its statehood and cultural identity was
formed in the Middle Ages. Halilov (1993) systematically describes the language
contacts betweenGeorgian and neighboringNortheast Caucasian languages.The
main conclusion is that the borrowings from Daghestanian languages into east-
ern dialects of Georgian do not appear in the Georgian literary language, and
should therefore not be visible in our dataset. In the reverse direction, intensive
borrowing took place in the nominal domain, where also many Iranian loans
were transmitted into Daghestan via Georgian. The only two Daghestanian lan-
guages in the sample whose lexicon was significantly influenced by Georgian
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are Avar (kat → ava) and Tsez (kat → ddo), the immediate eastern neighbors of
Georgian. Contacts with Nakh languages such as Chechen did exist, but did not
leave substantial traces in the basic vocabulary of either Georgian or Chechen.

The Iranian branch of Indo-European (kur, pes, oss, pbu) has been one of the
decisive factors which shaped the linguistic landscape of the Caucasus. The Ira-
nian languages are classified into the two subgroupsWestern Iranian and Eastern
Iranian, each of which can be separated into a northern and a southern branch.
NorthEuraLex contains the dominant language of each of the four groups.

Ossetian (oss), one of two extant Northeast Iranian languages (the other be-
ing Yaghnobi in Tajikistan), is taken to be a direct descendant of the Scytho-
Sarmatian languages spoken by Iranian peoples all over the Central Asian steppes
since the 8th century BC. Modern Ossetian is split into two varieties, the larger of
which, Iron, is spoken by about 570,000 speakers in both North and South Ossetia,
and is the variant represented in NorthEuraLex. According toThordarson (2009),
evidence from placenames in the Northwest Caucasus suggests that the Ossetes
once lived further to the west, where Turkic and Circassian languages are spoken
today, and that a Nakh language related to Ingush was spoken in North Ossetia.
These interactions have left their traces in the lexicon, and Iron Ossetic contains
layers of loanwords from Circassian (ady → oss), Nakh (che → oss), and Turkic
languages (Turkic → oss).

Pashto (pbu), the only important Southeast Iranian language, is spoken by
about 50 million people in Southern Afghanistan and Northern Pakistan. Mod-
ern Pashto is not of immediate relevance to the Caucasus, but an important sec-
ond datapoint in addition to Ossetian for reconstructing the cognate sets present
in Eastern Iranian, which can be expected to lead to a clearer picture. The two
largest lexical influences on Pashto are Persian andHindi-Urdu (pes, hin ◦→ pbu),
the languages of neighboring states with a lot of cultural influence on the moun-
tains inhabited by Pashtun tribes. Some additional religious and scientific termi-
nology was borrowed directly from Arabic as well (arb → pbu).

Modern Persian (pes), the only major Southwestern Iranian language, is spo-
ken under different names in Iran (Farsi), Northern Afghanistan (Dari), and Tajik-
istan (Tajik). As the state language of the Persian empire as well as modern Iran,
and the predominant language of literature and science in the region, Persian
has been a major source of lexical material for all neighboring languages, includ-
ing Turkish and Hindi. In these contacts, Persian also served as a transmitter
language for much religious and scientific vocabulary which the Persians bor-
rowed from the Arabs together with Islam (arb → pes). Loans from Turkic and
Mongolic languages into Persian do exist, but they are mostly confined to the
military and the administration.
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By far the most important Northwestern Iranian language is Kurdish, with an
estimated 30million speakers. Of the different variants of Kurdish, NorthEuraLex
samples the Kurmanji language (kmr) by a dialect spoken in Turkey near the Syr-
ian border, i.e. in the center of the Kurdish-speaking lands. During its history,
all variants of Kurdish have borrowed substantially from their Arabic-speaking
southern neighbors (arb → kmr), and to a much lesser degree from the Armeni-
ans to the north. Also, as any state language on a minority language, Turkish has
left lexical traces in the NorthEuraLex variant Kurmanji (tur → kmr), whereas
an Iranian variant would have displayed a strong recent influence from Persian.

Armenian (hye), the oldest Indo-European language of the Caucasus, forms a
separate branch of the family, with possible deep affinities to Greek. In addition
to a layer of very early loans from Kartvelian (kat → hye) and some borrowings
from Northeast Caucasian languages, Armenian has been under pervasive influ-
ence from various Iranian languages throughout its history, to the point that it
was long itself considered an Iranian language. Bailey (1987) discusses the dif-
ferent layers of Iranian loanwords which have been the subject of more than a
century of research, and are so rich that their analysis contributed to a better
understanding of the development of Middle Iranian. Since some of the loans go
back as far as the Old Iranian period, it makes sense to include Iranian ◦→ hye
in the gold standard in order to model the ancient connections. As later cultural
vocabulary overwhelmingly came from variants of Persian, I additionally include
a link pes ◦→ hye.

Turkic presence in the Caucasus goes back to the arrival of Oghur tribes in
the 7th century, who formed the Bulgar and Khazar khanates in the Pontic and
Caspic steppes. Too little is known about these languages to decide whether Tur-
kic loans in the North Caucasus can be traced back to this time, or whether they
occured during the time of the Pecheneg khanates, who occupied the same area
in the 10th and 11th centuries. The influence of their Pecheneg language, which
belongs to the Oghuz branch of Turkic, is approximated in the gold standard by
Azeri (azj). The next Turkic-speaking steppe state, the Cuman-Kipchak confed-
eration of the 12th century, brought the Kipchak languages spoken by today’s
Turkic inhabitants of the North Caucasus, such as Karachay-Balkar in the North-
west Caucasus, the Nogai language in the center, and Kumyk in Northern Dagh-
estan. These languages especially influenced the Circassian languages, Chechen,
and the Northern Daghestanian languages Dargwa and Avar (Kipchak → ady,
che, dar, ava). All of these contacts will be represented by means of the only
Kipchak language, Kazakh, in the language sample for this case study. As an ad-
ditional datapoint, I also add Uzbek (uzn) to the dataset, which does not appear to
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have any relevant contacts into the Caucasus beyond the Common Turkic layer
represented by the other three languages. On the south side of the Caucasus, Ot-
toman Turkish borrowed extensively from Arabic (arb → tur), the language of
the southern half of the Ottoman Empire, and in turn influenced the Arabic di-
alects in Syria and Iraq. Like most languages of the region, Turkish, Azeri, and
Uzbek have many loans from Persian (pes → tur, azj, uzn).

Eastern influences on Russian (rus) and the lexical sources for the Mongolic
languageKalmyk (xal) were already discussed in the previous section.The Semitic
languages represented in NorthEuraLex, Arabic (arb) and Hebrew (heb), were not
strongly influenced by any languages from the north. Still, Arabic needs to be in-
cluded as an important source of religious and scientific vocabulary for the entire
Islamic world. Hebrew, the most important Northwest Semitic language which
shares hundreds of cognates in basic vocabulary with Arabic, did not interact
much with any languages of the Caucasus area, but still seemed worthwhile to
include as a test case for the absence of lexical flow.

The cognate overlaps visualized in Figure 4.17 show that the lexical flow in-
ference problem on this set is again different in structure from the other three
example scenarios. This time, there are multiple poles causing lexical overlaps
across much of the region, as Arabic, Iranian, Russian, and Turkic material are
all very widespread. A large part of the lexical flow inference task consists in
answering the question whether e.g. some of the overlaps with Arabic can be
explained away by Persian or Turkic as intermediates.

Figure 4.18 shows the gold standard for phylogenetic inference. It is easy to
glimpse that this scenario is by far the most challenging to get right, due to the
very complex interactions among the native languages of the Caucasus, which
are additionally influenced by the four major external sources of lexical material
mentioned above.

After presenting the four test scenarios derived from true linguistic histories,
we now turn to the way in which any number of additional test scenarios can be
synthesized in order to gain a better picture of the comparative performance of
different approaches to lexical flow inference.
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Figure 4.17: Visualization of inferred cognate overlap in the Caucasian
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After some general remarks on the place of simulation studies in computational
historical linguistics as well as the in-silico approach to evaluation, this chapter
presents the simulation model which I am using in parallel to the NorthEuraLex
data to evaluate lexical flow inference methods.

Unlike more detailed existing simulation models like Hochmuth et al. (2008),
which have components for explicitly generating andmodifying phonetic strings
and modeling the geographical spread of languages, my model limits itself to
modeling contact in the form of transmitting discrete units, i.e. it models loan-
words on the level of cognacy, without generating actual phonetic forms.This cre-
ates data different fromwhat historical linguistics would apply to decide whether
lexemes were inherited or borrowed, but the shape of the data is exactly what
will be needed to evaluate lexical flow inference algorithms.

5.1 Simulation and in-silico evaluation

5.1.1 Advantages and shortcomings of simulation

A simulation model is an algorithm which models the behavior of some real-
world system, and uses randomness to generate output which is similar to the
output of the real system. For instance, an adequate model of an economy should
generate time series of measures such as interest rates, inflation, and unemploy-
ment which behave just as erratically as their real-world equivalents. An ade-
quate model of tree growth should generate trunk shapes and branch structures
which look just like the ones we can observe on real trees.

A very popular application of simulation models is as a way of testing assump-
tions about how the actual data can be explained. If our model generates data
which are indistinguishable from our real data according to some relevant mea-
sure, we can take this as evidence that we have correctly understood and formal-
ized an interesting aspect of the problem.

Within linguistics, this paradigm has previously mainly been applied to lan-
guage competition. Schulze et al. (2008) give an overview of different attempts to
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let a distribution of language sizes (by number of speakers) emanate from mini-
malistic models, with the goal of mirroring the observable distribution as closely
as possible. Many of the more successful models are agent-based, modeling in-
dividual speakers which can choose to take over the language of neighboring
speakers based on a prestige value, or just the dominant language in the neigh-
borhood.

Combining previous models for explaining the distibution of language sizes,
de Oliveira et al. (2008) arrive at a model which captures the observable distribu-
tion of language family sizes. While the final model given in the appendix of the
paper is rather simple, the authors report that in additional experiments, adding
more complexity to the models (e.g. by including the effects of war and similar
historical contingencies) did not have any influence on the overall good fit with
observed family sizes. I will take this as an indication that attempting to include
such effects into my model is just as unlikely to lead to different behavior, allow-
ing me to keep my own simulation simple as well.

Establishing knowledge about real-world systems on the basis of simple simu-
lations is frequently criticized as too reductionistic, and spectacularly wrong pre-
dictions resulting from simulation models may have contributed to wide-spread
scepticism towards modern economic theories. The practical and far less contro-
versial advantage of simulation models is that they allow us to generate arbi-
trary amounts of data to test algorithms on. This in-silico evaluation allows us
to compensate for insufficient amounts of actual test data, or as additional cross-
validation of models developed on (and optimized for subsets of) actual data.

This is the paradigm in which Embleton (1986) already worked. Her simula-
tion model represents an early attempt to adequately model the influence of
borrowing between neighboring languages on cognate-based phylogenetic infer-
ence. The model is similar in spirit to the one I am presenting in this chapter, in
that it operates on the level of individual cognate replacement events. Unlike my
model, it assumes that the process of language split can be modeled by recursive
subdivision of a two-dimensional area, precluding the possibility of geographical
spread. Also, borrowing events are modeled as independent, i.e. for every new
borrowing event sampled according to a global borrowing rate, a language picks
one of the neighboring languages as the donor language at random, whereas the
model I present in this chapter samples an additional level of contact channels
in order to mirror the strong tendency for loans to occur in ‘packages’ triggered
by historical events.

Murawaki (2015) presents another approach which explicitly simulates the
transmission of lexical items by borrowing among neighboring language vari-
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eties, but does not have a phylogenetic component. The structures produced are
thus very similar to my concept of contact flow networks. Based on the cognacy
overlaps resulting from simulation on different network typologies, Murawaki
then performs phylogenetic analysis, with the somewhat surprising result that
the phylogenetic signal tends to look tree-like on tree-like spatial structures, even
if inheritance is not modeled. This could indicate that the usually very good fit of
tree models does not necessarily have to result from tree-like evolution, but that
wave-like change can just as easily lead to tree-like signals in certain geograph-
ical configurations, which has interesting implications for the debate between
family tree and wave models of language change.

Unlike the other models, the rather complex simulation model by Hochmuth
et al. (2008) generates phonetic data, to which the authors then apply modern
standard tools for phylogenetic tree and network inference. While they find the
amount of simulated lateral contact to have little impact on the performance of
tree inference algorithms, the behavior of phylogenetic network algorithms is
described as very erratic.

The main difficulty in using simulation models is that they are necessarily
based on a set of assumptions about the nature of the data, which might not be
true in reality. What if the way in which we generate data fails to capture an
important case that occurs in real data, and is then not covered by the algorithm
which we developed and tested on simulated data? To keep this problem under
control, it is always best to evaluate a system both against simulated and real
data. In the realm of causal inference, there has been a very strong tendency
to develop the theory and algorithms either on very well-studied toy examples,
or on massive amounts of simulated data. This makes it difficult to assess the
performance of these methods on large real-world datasets, a problem that we
are going to be faced with again when evaluating their potential for lexical flow
inference.

5.1.2 Principles of in-silico evaluation

When assessing the performance of a heuristic algorithm (i.e. one without prov-
able properties), the classical framework is to collect a set of gold-standard data,
and to let the algorithm run on the data, comparing the output to the gold-
standard using a useful definition of true and false positives and negatives, and
then quantifying the performance in terms of precision and recall. Since gold-
standard data are often difficult to acquire in large quantities (the last chapter pro-
vides a very good example of the efforts that may be required), the conclusions
made from evaluating an algorithm on real data often rest on unstable grounds.
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In the absence of a large enough amount of gold-standard data, one can use
simulated data to get an impression of how the algorithmwould perform on other
data of the same shape. To get informative results, quite a bit of effort needs to be
invested into developing a simulation model which is adequate for the purpose.
The main requirements are that the model should not be overly complex in order
to decrease the risk of overfitting the algorithm to certain (possibly hidden) prop-
erties of the gold-standard data. In a simulation model, it is always tempting to
capture all aspects of the real data, but such an approach will often require many
decisions to be made with inadequate backing in data or theory.

For instance, the actual linguistic history of a region is shaped bymany histori-
cal events such as invasions, political ideas, technical innovations, and the shape
of trade networks. A simulation model could try to emulate all of these phenom-
ena in order to arrive at realistic simulated histories, and use these events to gen-
erate linguistic data. The problem is of course that such a model would require
a very explicit (and formalized or at least quantitative) theory of political events,
predictions about the conditions under which they will occur, and many other
components which would quickly explode into separate research projects if we
want to justify all of the myriad decisions which would be involved in design-
ing such a model. Keeping the model complexity low, and the number of design
decisions at a minimum, helps to avoid introducing too many unwarranted as-
sumptions.

To configure the parameters even of a small model, it is good scientific practice
to use structural features or at least statistics estimated from real data to increase
(and quantify) the amount of realism. For instance, we might want to put data on
historically observed unemployment rates into an economic model, to estimate
how strongwe expect oscillations in thismeasure to be in reality. For a simulation
of language history, we will need to estimate (and inform the model) how often
languages tend to split, and how intensively they can borrow from neighboring
languages.

5.2 Generating phylogenies

A core component of any simulation model in computational historical linguis-
tics (and also of some of the more advanced statistical methods) is a generative
description of possible tree shapes. In statistical methods, these models are used
to efficiently sample the space of possible trees in order to find good phylogenies.
In in-silico evaluation, some part of the generated tree is removed from the input
data for an algorithmwhich tries to reconstruct the missing information, and can
then be evaluated against the truth.
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Evolutionary models of species trees in biology as in linguistics are minimally
based on two modules: the first one describes how languages or species split,
and the second one models the process of languages or species becoming extinct.
Moreover, if we explicitly model a genome, at least the possible mutations dur-
ing inheritance need to be modeled. In all these respects, the simulation model
presented here makes very simple assumptions in order to avoid dependence on
too many parameters and choices. If even a simple model yields cognate histo-
ries which are interesting enough for evaluation, there is no reason to introduce
additional complexity.

5.2.1 Models of lexical replacement

On the level of cognate sets, the central evolutionary process to take into ac-
count is the gradual replacement of existing words for many basic concepts with
new lexical material. Semantic change is a phenomenon which appears to occur
even in geographically isolated languages, and should therefore be modeled as a
language-internal process. Internal replacement of words is also the main mech-
anism which makes the descendants of an ancestral language which has split
dissimilar over time.

While some results suggest that semantic change happens more quickly for
some concepts than for others (Pagel et al. 2007), and that these different rates
of lexical replacement have cognitive correlates (Vejdemo & Hörberg 2016), for
simplicity we will assume both that semantic change occurs at equal speed to
all concepts, and that the rates are constant across languages. Any other design
choice would lead to additional parameter settings which are difficult to motivate
on the basis of available literature, and at the time depth of 5,000 years we will
be simulating, the possible existence of ultraconserved words in real data is not
much of an issue.

A constant replacement rate 𝜌 is the only parameter which defines the behav-
ior of lexical replacement. 𝜌 defines the probability for a given word in a given
language to be replaced by a word from a new cognate set during the current
simulated year. We are therefore not simulating semantic change that would
lead to loss of differentiation between concepts, and since we will only consider
cognate sets for each concept separately, we also do not model the fact that the
new cognate set for a concept might arrive there by extension from a different
concept.

In the simulations I am running, the base replacement rate is set to 𝜌 ∶=
0.00036. This is the rate we arrive at if we assume a retention rate of 70% af-
ter 1,000 years. I am setting the retention a bit lower than the 81% derived for
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a 215-concept list by Swadesh (1955) to account for the unavoidable presence of
lower-stability concepts in a list of 1,000 concepts. Most of the early assumptions
about retention rates, especially their constancy across time, has been rejected
in many individual cases by subsequent research. In a computational study cov-
ering three large language families, Atkinson et al. (2008) substantiate the suspi-
cion that lexical change tends to occur in bursts, rather than gradually. In order
to keep the number of parameters low, I still stick to Swadesh’s original model
while acknowledging that the assumption of a constant replacement rate across
languages, concepts, and time is a very rough approximation to a much more
complex reality. It is worth noting, however, that this does not mean I am as-
suming a constant effective replacement rate. As I am going to demonstrate, the
combination of a Swadesh-style fixed base rate with a fully developed model of
borrowing does yield quite realistic variation in the effective replacement rate.
I therefore see no immediate need to further complicate the model by an addi-
tional parameter, even though the vast majority of contemporary models tend
to treat the replacement rate as a further parameter that itself varies across time
and across language varieties.

5.2.2 Simulating how languages split and die

With language-internal lexical replacement in the model, all that is needed for
a basic model of linguistic evolution is a model of the process by which a lan-
guage splits into several descendants, and the disappearance of languages. For
a realistic model of splits, we would need an explicit geographical model where
every language takes up a certain territory, where a larger territory would make
it more likely for the language to develop dialects and then split. Moreover, the
process should be modified by the possible presence of stabilizing factors such
as states, and the ease at which people can migrate throughout their language
community. For a good model of extinction, we would similarly have to model
at least the effect of armed conflicts, competition between languages of different
prestige and cultures at different technology levels, natural disasters, and assim-
ilation processes within states.

Instead of trying to model all these details (a process which would again in-
volve many decisions that are difficult to justify), we resort to a popular basic
model of species evolution in biology. A branching process is a Markov process
describing the development of a number of nodes each of which generates some
number of children with a given probability at each discrete time step. If the pos-
sible values for the number of children are 0, 1, and 2, we are modeling a process
where branches of the population can die out, stay at the same size, or multiply.
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These three options are sufficient to generate any binary branching language
tree. The simplest parametrization results when we set the probabilities for each
number of children to 𝑝(2) ∶= 𝜎, 𝑝(1) ∶= 1−𝜎 . In this formulation, we can inter-
pret the parameter 𝜎 as the split rate, expressing how likely it is for a language
to disintegrate into two separate languages.

To simulate how languages become extinct, we could simply assume an extinc-
tion rate 𝛿 , and delete during each simulated time unit each language from the
tree with this probability. However, previous research summarized by Holman
(2005) has shown that the distribution of language family sizes and tree shapes
generated by such a branching process differs significantly from the patterns we
observe in actual language trees.

To arrive at more realistic datasets, it seems necessary to adapt at least a very
simple model of geography in order to simulate at least some of the effects of
competition between languages, and the survival of remnants of older language
families in isolated geographical positions, such as islands and mountain valleys.
My central modeling assumption is that languages never disappear if left alone,
but only because speakers of another language migrate and become dominant
(e.g. English in North America), a state conquers a new territory and imposes its
language on the newly acquired population (e.g. the Roman Empire in Gaul, or
later colonial empires), or a population shifts to a more prestigious language for
economic reasons (e.g. from Livonian to Latvian, and many other minority lan-
guages). The crucial point is that I will assume extinction to happen exclusively
due to the spread of another language. Even if exceptions to this rule might ex-
ist, I consider this a much more sensible default assumption than to assume that
some languages just happen to become extinct without being in contact with
other languages.

My model subsumes all of these situations by having a language that splits ex-
pand into a neighboring territory, which might previously have been occupied
by another language, which then becomes extinct during the process. That said,
a splitting language will always prefer to spread into an unoccupied territory
first, so that the map will tend to become filled with languages before compe-
tition and replacement sets in. To create geographical niches in which less fre-
quently splitting families can survive longer (the Caucasus), and hub areas were
languages tend to replace each other much more frequently (the Steppes), only
a randomly shaped island or continent of about half the size of a square grid of
cells is treated as occupiable territory. The neighborhood relation is defined pri-
marily by adjacency, but it also connects diagonals (i.e. a language can have up to
eight neighbors). Many of the random continent shapes will feature drawn-out
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peninsulae with only one access point, or landbridges which serve as bottlenecks
for expansion.

When creating a scenario, between two and ten initial language families (all
unrelated, i.e. with cognate sets modelled as completely independent) are put in
random positions on the landmass, and an overall split probability 𝜎 is selected
uniformly from the range [0.0004, 0.0001]. The purpose of varying 𝜎 is to emulate
the consequences of overall political instability or a geography prone to migra-
tions in a single parameter that may vary between scenarios. For the simulation
study, we will be operating on grids of 10 × 10 cells, with a random connected
landmass occupying 50 of the 100 tiles. This means that only 50 languages can
exist at any given time, a number which is in the tractable range for the algo-
rithms I will develop. Depending on the split rate 𝜎 , many extinct languages and
a very complex contact history can be hidden behind the final set of observable
living languages.

5.3 Modeling lexical contact

5.3.1 Modeling the preconditions for contact

The simplest possible contact model would just establish contact between any
pair of living languages with a small probability per simulated year, and would
let contact break down again after a random number of years. Initial explorative
analysis of such a model quickly showed that the possibilities for contact should
be influenced by a model of geographical proximity, which is trivially given by
our model which assigns a single cell to each language, in a grid which defines
a neighbor relation between speakers or geographical positions which can be
occupied by languages.

This type of geographical constraint also appears obvious on the basis of gen-
eral considerations. If we imagine a historical contact situation were words were
exchanged, the prototypical cases would be people from neighboring villages
who meet and transfer the words for new concepts that the neighboring culture
does not yet have. The more long-distance influences which happened through
trade typically had much influence on the technological and sometimes cultural
vocabulary, but did not tend to influence the basic vocabulary so much that we
would necessarily have to model it.
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5.3.2 A monodirectional channel model of language contact

Most contacts between languages which have severe consequences for one of the
languages involved are monodirectional. While some lexical material might be
mutually exchanged, e.g. to talk about trade goods derived from different modes
of subsistence in different climate zones (as was the case for Nenets reindeer
herding and Komi agricultural vocabulary), if the basic vocabulary is affected,
this typically entails that one language is in a dominant position, and the other
language is heavily influenced by the other. As Sankoff (2001) puts it, “language
contacts have […] taken place in large part under conditions of social inequality
resulting from wars, conquests, colonialism, slavery, and migrations — forced
and otherwise”. Typical examples of this within the NorthEuraLex sample are
the contact of a technologically advanced civilization with a less advanced ethnic
group (e.g. Chinese influence on Mongolian), the language of a conquering elite
influencing the language of a population they control (e.g. Norman French and
English), or both (colonial languages, like English influence on Hindi).

These general observations imply that monodirectionality is a reasonable de-
fault assumption for lexical flow affecting basic vocabulary. My simulationmodel
emulates the window of time in which one language dominates and influences
another by generating directed channels through which lexical items may flow
at a certain rate, inheriting the channels through splits by handing them on to
the daughter language which stays in place, and closing the channels again after
some time. This does not make it impossible to model the historically rare case
where two languages exchanged large amounts of lexical material on a relatively
equal footing, as e.g. resulting from intensive trade contact of neighboring cities.
The simulated histories will occasionally include such situations as well, since
there is nothing to prevent that two monodirectional lexical transfer channels in
reverse directions will be opened independently.

5.3.3 Opening and closing channels

The probability 𝛼𝑡(𝑙1, 𝑙2) of a channel opening from language 𝑙1 to 𝑙2 can sim-
ply be modeled as dependent on the neighborhood relation. We could assign
𝛼𝑡(𝑙1, 𝑙2) ∶= 𝛼(‖(𝑥𝑡(𝑙1), 𝑦𝑡(𝑙1)) − (𝑥𝑡(𝑙2), 𝑦𝑡(𝑙2))‖) for any function 𝛼 assigning
channel opening probabilities to any distance. In the current implementation,
however, I am simply drawing a global 𝛼 value for each scenario from a uniform
distibution over the interval [0.0001, 0.0003], and set 𝛼(𝑙1, 𝑙2) ∶= 𝛼 whenever 𝑙1
and 𝑙2 occupy neighboring cells, and to 𝛼(𝑙1, 𝑙2) ∶= 0 for languages with a dis-
tance of more than one cell. To make this number easier to grasp, it means that
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if we have 49 living languages filling a square of 7 × 7 cells (the most compact
configuration which can result from the simulation model), we expect between
0.0156 and 0.0468 new contacts channels to be opened during each simulated
year, i.e. a new contact every 21 to 64 years. To justify these rates, it is necessary
to compare them to the number of contacts arising in a similar cluster of real lan-
guages in a geographic area. One obvious option to do this is to reconsider the
NorthEuraLex gold standard from the last chapter. Taking the gold standards for
a low-contact area (Siberia) and a high-contact area (the Caucasus) together, we
have the very convenient number of 44 languages in the set we consider.The gold
standard contains 89 contacts which shaped the history of these languages dur-
ing the past 3,000 years, with older contacts mostly being under the detectability
threshold. On average, a new contact has therefore opened every 33.708 years,
which is well within the range determined for a slightly larger language sample
in the simulation model.

While a channel persists, lexical material will be transmitted from the donor
language to the recipient language at a certain rate, randomly replacing cognate
sets for different concepts. After some amount of simulated years, the channel
might break down, and lexical influence might cease.Themost obvious historical
parallel to this is if the speakers of one language moved away from the speakers
of a contact language, which is likely to decrease the intensity of contact be-
tween the speakers. A case in point would be the Turkic influence on Hungarian.
Hungarian was subject to a lot of lexical influence from Bulgar or a related Tur-
kic language on its way towards Middle Europe, and there was some additional
(though far weaker) influence during the Turkish occupation of large parts of
Hungary in the 17th century. For the past three hundred years, the Hungarians
have not been neighbors to any Turkic nation, which has caused the lexical flow
from Turkic to Hungarian to stop completely.

The straightforward idea resulting from these considerations is to model the
closing of channels in a very similar framework to their opening. Again, we de-
fine a contact breakoff probability 𝜔𝑡(𝑑) which could be dependent on the geo-
graphic distance 𝑑 at time 𝑡 . For the simulated language histories generated at
the end of this chapter, I am using a constant 𝜔 ∶= 0.002, i.e. each contact is
expected to last for 500 years on average. Letting the duration of contacts vary
is motivated by the different duration of real-word causes of language contacts,
such as the frequency of migrations, the existence of states, or the stability of
colonial rule. Given that during the time contact is established, its duration is not
yet known, it makes sense to decide randomly on a year-to-year basis whether
a contact persists. Simulating this with a constant rate that does not depend on
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any other factors is an answer to the basic requirement of keeping the number
of parameters low. The choice for the value of 𝜔 is a little harder to justify than
others, because it interacts heavily with subsequent choices for simulating chan-
nel behavior. Ultimately, the value mostly influences how many of the generated
contacts will break down before they had the chance to leave noticeable traces.
Since it would be much more economical to just open fewer contact channels
instead of opening many which do not result in any borrowings, it makes sense
to set 𝜔 low enough for most contacts to actually have visible consequences.
On the other hand, if too many contacts persist for thousands of years, we risk
creating the unrealistic scenario of a language’s lexicon becoming almost com-
pletely replaced by that of a neighboring language, due to our not simulating
differences in concept stability. Using these two constraints and experimenting
with different values for 𝜔, the chosen value yielded a good compromise where
most contacts have noticeable consequences, while still leaving a large part of
the recipient language’s basic vocabulary intact.

5.3.4 Simulating channel behavior

To simulate the behavior of a channel, we simply transmit every word for each
concept with a given probability. There is thus no notion of more or less stable
concepts, and we also abstract away from the layered structure of loanwords
(where e.g. month names are usually borrowed as a package). The only com-
plex decision remaining is how to determine the strength 𝜏𝑡(𝑙1, 𝑙2) of the chan-
nel, which will influence the rate of transfer 𝛽𝑡(𝑙1, 𝑙2). The design decision in the
model presented here is to generate a constant strength 𝜏𝑡(𝑙1, 𝑙2) for each chan-
nel when it is created, again dependent on the distance 𝑑 of the languages at
that time. In my implementation, 𝜏𝑡(𝑙1, 𝑙2) is only changed when a new channel
is established, and is set to 𝜏𝑡(𝑙1, 𝑙2) ∶= (1 − 𝑑) ⋅ 𝑋 for a random variable 𝑋 that
is uniformly distributed over [0, 1]. In the current implementation, the relation
from channel strength to transfer rate is 𝛽𝑡(𝑙1, 𝑙2) ∶= 0.01𝜏𝑡(𝑙1, 𝑙2). For languages
with 1,000 basic concepts, this effectively sets the maximum possible transfer
rate (for 𝑋 = 1 and 𝑑 = 0) to 10 loanwords per simulated year. This maximal
rate makes it possible to generate very strong superstrate influences which oc-
cur within few generations, such as the introduction of the Norman French layer
into English. At a more typical rate of 1 loanword per year, we expect that during
an average contact lasting 500 years, about 40% of the recipient’s lexicon will be
replaced.
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5.3.5 Overview of the simulation

To summarize, Algorithm 1 again specifies the entire simulation procedure in
pseudocode. As is evident from the discussion above, very simple choices were
made for the majority of the many parameters we introduced, although the sim-
ulation model could be made more complex in many places, leaving some poten-
tial for increasing the model’s realism as additional quantitative results become
available.

5.4 Analyzing the simulated scenarios

The final step towards establishing the quality of the simulated data as a test
set is to inspect the results a posteriori, and see in how far they show the de-
sired properties of being similar to the real data, while still displaying structural
variability.

To make the inspection and tracing of simulated language histories easier, the
following naming convention was adapted: identifiers of living languages start
with a capital L, whereas dead languages have a D in that position. The second
position in a language name is occupied by a numeric phylum ID, i.e. the inde-
pendently generated ancestor language. Languages with an identical phylum ID
are thus deeply related, whereas similarities between languages with different
phylum IDs can only be explained by contact. The remainder of the language ID
encodes the true phylogenetic tree by appending to the parent’s name a pair of
different random vowels or random consonants in order to produce the names
for the two children resulting from a split event. As a result, we can tell at a
glance that D1fab is a common ancestor of L1fabu, L1fabewi, and L1fabexizo,
as well as a sister language of D1faw, and a descendant of D1fa.

To give an impression of the kind of histories arising from the simulation
model, Figure 5.1 shows the trees of two language families in contact, where, just
as in the gold standard visualizations, contact channels are represented by green
arrows, and inheritance relationships are represented by black arrows.The thick-
ness of arrows represents the size of the lexical contribution from each source.
For instance, the language L1ra has diverged quite a lot from its sister language
D1re due to being heavily influenced, among others, by L0z and L1fevah. In con-
trast, the layer of loans from L1fabewu in L1fabexizo is not very large.

To showcase the geographic model, the maps in Figure 5.2 shows the final posi-
tions of each language for the same scenario, as well as the state of the simulation
after 1,800 and 3,400 simulated years (i.e. 3,200 and 1,600 years before the final
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Algorithm 1 simulate_network(𝑘, 𝑡𝑚𝑎𝑥 , 𝑛, 𝜌, 𝛿, 𝜎 , 𝛼(𝑑), 𝜔(𝑑), 𝛽(𝜏))
1: ℒ ∶= {(𝑤𝑖1, … , 𝑤𝑖𝑛) | 1 ≤ 𝑖 ≤ 𝑘}, (𝑘 proto-languages of random words for 𝑛 concepts)

2: 𝑡 ∶= 0
3: while 𝑡 < 𝑡𝑚𝑎𝑥 do
4: for each 𝐿 ∈ ℒ do
5: if 𝑟𝑛𝑑() < 𝜎 then
6: 𝐿1 ∶= 𝑐𝑜𝑝𝑦(𝐿), 𝐿2 ∶= 𝑐𝑜𝑝𝑦(𝐿)
7: ℒ ∶= ℒ ∪ {𝐿1, 𝐿2}
8: 𝑙𝑖𝑣𝑖𝑛𝑔(𝐿) ∶= 𝑓 𝑎𝑙𝑠𝑒
9: 𝑝𝑜𝑠(𝐿1) ∶= 𝑝𝑜𝑠(𝐿)
10: if 𝑝𝑜𝑠(𝐿) has unoccupied neighbor 𝑛𝑒𝑤𝑝𝑜𝑠 then
11: 𝑝𝑜𝑠(𝐿2) ∶= 𝑛𝑒𝑤𝑝𝑜𝑠
12: else if 𝑝𝑜𝑠(𝐿) has neighbor 𝑛𝑒𝑤𝑝𝑜𝑠 occupied by 𝐿3 then
13: 𝑝𝑜𝑠(𝐿2) ∶= 𝑛𝑒𝑤𝑝𝑜𝑠
14: 𝑙𝑖𝑣𝑖𝑛𝑔(𝐿3) ∶= 𝑓 𝑎𝑙𝑠𝑒
15: end if
16: end if
17: end for
18: for each 𝐿𝑖 ∈ ℒ where 𝑙𝑖𝑣𝑖𝑛𝑔(𝐿𝑖) do
19: for 1 ≤ 𝑥 ≤ 𝑛 do
20: if 𝑟𝑛𝑑() < 𝜌 then
21: 𝑤𝑖𝑥 ∶= 𝑤∗ for a new cognate ID 𝑤∗
22: end if
23: end for
24: end for
25: for each 𝐿𝑖 , 𝐿𝑗 ∈ ℒ where 𝑙𝑖𝑣𝑖𝑛𝑔(𝐿𝑗) do
26: if 𝜏(𝐿𝑖 , 𝐿𝑗) > 0 and 𝑟𝑛𝑑() < 𝜔(𝑑(𝐿𝑖 , 𝐿𝑗)) then
27: 𝜏(𝐿𝑖 , 𝐿𝑗) ∶= 0
28: else if 𝜏(𝐿𝑖 , 𝐿𝑗) = 0 and 𝑟𝑛𝑑() < 𝛼(𝑑(𝐿𝑖 , 𝐿𝑗)) then
29: 𝜏(𝐿𝑖 , 𝐿𝑗) ∶= 𝑟𝑛𝑑() ⋅ (1 − 𝑑(𝐿𝑖 , 𝐿𝑗))
30: end if
31: end for
32: for each 𝐿𝑖 , 𝐿𝑗 ∈ ℒ where 𝑙𝑖𝑣𝑖𝑛𝑔(𝐿𝑗) and 𝜏(𝐿𝑖 , 𝐿𝑗) > 0 do
33: for 1 ≤ 𝑥 ≤ 𝑛 do
34: if 𝑟𝑛𝑑() < 𝛽(𝜏(𝐿𝑖 , 𝐿𝑗)) then
35: 𝑤𝑗𝑥 ∶= 𝑤𝑖𝑥
36: end if
37: end for
38: end for
39: 𝑡 ∶= 𝑡 + 1
40: end while
41: return ℒ
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Figure 5.1: An example of a simulated scenario, with complex interac-
tions

state). The three maps give an impression of how the initial population splits to
fill the available space, and what type of contact is simulated by the model. Open
contact channels are visualized in dark green (monodirectional contact) and light
green (bidirectional, i.e. contact channels in both directions are open). The thick-
ness of these lines represents the intensity of the contact, i.e. the rate at which
lexical material is transmitted across each channel.

As in the cognate overlap maps used to visualize the shape of the inference
problems in Chapter 4, the thickness of the black lines visualizes the strength of
cognate overlaps between living languages at the respective point in time. In the
comparison between the three stages, it becomes very obvious how some lines
which were still strong thousands of years ago have faded into the background,
reflecting the loss of similarity caused by lexical replacement.

To generate the evaluation set, a total of 50 scenarios were generated by sim-
ulation. Taken together, the simulated data contain 2,139 living languages dis-
tributed over 297 language families. In addition, a total of 7,128 intermediate
(proto-)languages wasmodeledwhile producing the data for the living languages.
In total, while generating the history of the languages, a total of 2,250,891 borrow-
ing events were generated and logged, of which 380,571 events (16.9%) turn up in
the stored etymologies of one of the 2,139,000 lexical items in living languages.
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5 Simulating cognate histories

In order to decide in which respects the simulation model does make sense (or
not), the next section addresses the question whether the simulated data are sim-
ilar enough to the NorthEuraLex data to be able to serve as additional test cases
for validatingmy results.The section thereafterwill answer the questionwhether
the generated histories are non-trivial enough to provide some challenge to phy-
logenetic and lexical flow inference methods, and also varied enough to cover
a wide array of situations we would expect to be faced with in actual linguistic
histories.

5.4.1 Are the scenarios realistic?

The most trivial question to ask about the realism of the simulated histories
is whether the distribution of cognate class sizes is similar enough to the one
inferred from the NorthEuraLex data. The average size of cognate sets in the
NorthEuraLex data is 2.253, whereas the simulation produces scenarios with av-
erage cognate sizes 2.164 ± 0.192, with the maximum being 2.656, and the min-
imum 1.801. This shows that the simulated cognate sets are similar in the size
to the ones inferred by NorthEuraLex, indicating that the types of overlaps and
therefore the information geometry will behave similarly. But since the average
size of cognate sets heavily depends on the number of languages in the dataset, it
might be more relevant to compare the average number of cognate sets per con-
cept per language, and compare this measure across scenarios. In the simulated
data, this number varies around 0.577 ± 0.095, with the minimum at 0.388 and
the maximum at 0.800. The equivalent measure computed from the inferred cor-
relate sets in NorthEuraLex is 0.497, again fitting very well into the distribution
of simulated scenarios. Finally, Figure 5.3 shows the distribution of cognate class
sizes in the simulated data next to the one for the classes automatically inferred
from NorthEuraLex. It is clearly visible that both distributions are very similar,
except for a much higher ratio of two-element cognate classes resulting from
automated cognate detection. This fits well with the observations made when
inspecting the inferred classes for fish, and is very likely an artefact of UPGMA
clustering, which is sensitive to spurious pairwise similarities between elements
which should form singleton classes. This difference also becomes visible when
fitting Pareto distributions to the observed counts. The maximum likelihood esti-
mates of the alpha parameter are 𝛼 = 0.284 for the NorthEuraLex data, but only
𝛼 = 0.189 for the simulated data.

To get a first impression of how realistic the amount of contact in the simulated
data is, we can compute the percentage of words in the final data which were bor-
rowed at some point in their history. Across all scenarios, 23.92% of all attested
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Figure 5.3: Distributions of cognate class sizes on NorthEuraLex (gray)
and simulated data (black)

words have at least one borrowing event as part of their history. Between sce-
narios, the ratio varied between 1.27% and 38.53%, with the mean at 23.07±8.71%.
This is very much in line with the numbers derived from theWOLD database and
summarized in Tadmor (2009), where the ratio of loans in content words varied
between 1.3% (Mandarin Chinese) and 65.6% (Selice Romani), and the average ra-
tio of loans across all languages was 24.2%. Therefore, both the overall frequency
of loans and the variance of the ratio across simulated languages and scenarios
are very realistic.

With respect to lexical replacement, we can compute the distribution of word
ages from the logged histories. For each word in a living language, we can trace
back the history to the point where the word came into existence as a word for
the concept in question by a replacement event (a mutation, in biological terms),
or back all the way to one of the initial languages. Across all scenarios, 16.93%
of the words could be traced back to one of the initial languages. Unsurprisingly,
the distribution almost exactly fits an exponential curve with our loss rate of
about 0.036% per year, leading to e.g. 3.42% of words older than 4,500 years,
6.83% between 2,000 and 2,500 years old, and 16.29% younger than 500 years.The
language-wide averages of word ages were distributed around 2357.43± 133.84. I
have found it impossible to find even rough cross-linguistic estimates for the
word age distribution across entire lexica of modern languages. Still, we can
use some etymological resources to get a first impression whether the numbers
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seem realistic. Sammallahti (1988a) provides the most up-to-date overview of the
known lexicon of Proto-Uralic as well as some later proto-languages of branches
such as Finno-Ugric. He counts 124 Uralic stems as being reconstructable for
Proto-Uralic (perhaps 7,000 years ago), about 290 additional ones for Proto-Finno-
Ugric (5,000 years ago), and 150 more for Proto-Finno-Permic (a contested sub-
grouping of perhaps 4,000 years). Janhunen (1977) reconstructs about 700 stems
in total for Proto-Samoyedic, at about 2,500 years of age. A typical dictionary of
a fully known language that is sorted by lexical roots, such as de Vaan (2008) for
Latin or Lehtisalo (1956) for Nenets, covers the history of about 2,000 roots. We
can thus assume that this is roughly the number of etyma which we can assume
for an unwritten language. Fitting an exponential curve to these five data-points,
our replacement rate of 0.036% per year, or about 30.24% per millennium, fits
almost perfectly. Calculating the distribution of word ages across this curve (and
counting every word older than PFU as 5,000 years old in the same way as I need
to do it for the simulated data), we arrive at a mean age of 2317.5 years, which
again fits very well into the distribution of values derived from the simulated
data. The distorting effect of borrowings on reconstructability therefore seems
to have a very negligible influence.

Another interesting question to ask about the distribution of word ages is
whether there are conservative languages which tend to conserve more ancient
words across the basic lexicon, whether due to limited lexical contact, or an in-
herent tendency to slower lexical replacement. This is equivalent to the question
whether different languages can have vastly different average replacement rates
across a timescale of thousands of years. While there is considerable evidence
that replacement rates can vary a lot on the short term (Atkinson et al. 2008),
it is unclear whether these differences are random fluctuations which might
equal out with time, or whether they are inherent properties of language systems
which remain in place for millennia. On the simulated data, while the underly-
ing model of divergence operates at a global replacement rate for all languages,
replacement by borrowing leads to very different retention rates. In the most
conservative simulated language, the average word age was 3475.92, as opposed
to 1892.89 in the language with the least stable vocabulary.This shows that a mix-
ture of a variance in global replacement rate for each scenario already leads to
an interesting and realistic range of measurable conservativity in the simulated
languages.

The next relevant point of comparison is the shape of the trees. An essential
observable property of binary trees is their balancedness, which can be defined
in many different ways, each capturing a different type of asymmetric behav-
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ior. Holman (2005) analyzes linguistic trees in this framework, making the very
interesting observation that language trees have different structure than would
be generated by simple birth and death processes, even if we allow different di-
versification rates for each branch. Holman uses the weighted imbalance score
by Purvis et al. (2002), to show that actual language trees are much more unbal-
anced than such a model would predict. The imbalance score for a binary node

𝑙 with children 𝑙1 and 𝑙2 is computed as 𝐼 (𝑙) ∶= 𝐵−⌈𝑆/2⌉
𝑆−⌈𝑆/2⌉−1 , where 𝑆 is the num-

ber of nodes on the subtree under 𝑙, and 𝐵 is the maximum of the sizes of the
two subtrees under 𝑙1 and 𝑙2. 𝐼 (𝑙) will be 0 for a maximally balanced node (in
the sense that a node with this number of descendants could not be more bal-
anced), and close to 1.0 if one of the children is a leaf and many other nodes are
descendants of the other child. For an entire tree, the weighted imbalance score
is a weighted mean over these node-based scores, where the weight 𝑤(𝑙) is 1 if
S is odd, 𝑤 = (𝑆 − 1)/𝑆 if S is even and I > 0, and 𝑤 = 2(𝑆 − 1)/𝑆 if S is even
and 𝐼 = 0 (such that completely balanced nodes count twice). This score is de-
fined in such a way that the expected value for trees generated by a birth and
death process is 0.5. As Holman shows, the weighted imbalance scores for actual
language trees are significantly higher than that, clustering around 0.7. The sim-
ulated trees have weighted imbalance scores between 0.587 and 0.820, with the
mean at 0.698±0.053, which fits Holman’s results surprisingly well. It seems that
a simple death-by-replacement model on a constrained geography is all that is
needed to explain the imbalance in empirically observed trees, without any need
to allow for branch-specific diversification rates or similar devices.

There are some additional phenomenawhich are so commonly observed in his-
torical linguistics that realistic datasets should contain some instances of them.
One of these are isolates, which can here simply be defined as phyla with only
one surviving descendant language. According to the Glottolog classification,
roughly half of the world’s families are isolates, and this is also roughly the ratio
of isolates in NorthEuraLex (9 out of 21 families). While isolates are not inter-
esting for evaluating phylogenetic methods, they can still be involved in some
interesting contact scenarios, and should therefore be present at least in a few
scenarios. So does the simulation model, where isolates can only occur if one of
the initial languages never splits during 5,000 simulated years, or if all but one of
the potentially many languages from a family are replaced by neighboring fami-
lies branching and expanding into its territory, produce a significant number of
isolates? Across all scenarios, only 16 of the 270 families generated by the simu-
lation model are isolates, a number which is unrealistically low compared to the
large numbers of isolates we observe in many regions of the world. While this
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is not a problem for evaluation purposes (as long as some isolates are present),
it might still be worthwhile to speculate why so many more isolates occur in
reality. One possible explanation is that the over-simplified geography (without
remote mountain valleys) does not generate enough niches for smaller families
to survive. Moreover, the constraint of having exactly one language per place
will counteract the arising of true isolates. In reality, if two villages with closely
related dialects of an isolate are surrounded by completely unrelated languages,
the two villages might prefer close contacts among each other, counteracting the
divergence into separate languages.

As a final point, a problem of realistic complexity should contain substrates.
To recapitulate, a substrate relationship is one possible result of language shift,
when the speakers of one language rapidly shift to another language, but the
shift is incomplete in leaving traces of the ancestral language (a substrate) in the
new language. In historical linguistics, the term substrate language is often used
in the sense of an otherwise unattested language whose existence can only be
reconstructed from a layer of words which have no etymology in the respective
family.With access to the simulated history of each word in a large datastructure,
it becomes possible to compute the ratio of words which were borrowed at some
point from a substrate language, and the number of languages without living de-
scendants which became sources of such borrowings. Analyzing the histories of
all words in the simulated dataset, we find that 5.04% of all words have a substrate
history by our definition. Averaging across scenarios, 65.16±37.05 languages, i.e.
slightly less than half of the 142.56 ± 62.66 extinct languages, played the role of a
substrate language during the history of at least one word. Of 78.62 ± 37.41 con-
tacts, 26.14±17.24 occurwith a donor languagewhich leaves no living descendant
in an average scenario. It is difficult to assess how realistic these numbers are,
because in the real world, words without an etymology are often difficult to at-
tribute to one common substrate donor. Still, there tend to be many instances of
unknown substrates even in the history of a very limited linguistic region such
as Northern Europe. The most famous instance is an unknown substrate in Ger-
manic consisting of mainly maritime vocabulary such as *strandō ‘beach’ and
*seglan ‘sail’. Originally assumed to comprise a third of the common Germanic
lexicon, it has been shrinking in size as additional Indo-European etymologies
for Germanic lexemes are being established. While some scholars like Hawkins
(1990) continue to advocate it, it now seems to be on the way to becoming a mi-
nority position. Less contested instances of substrates in the North are a layer of
pre-Uralic lexical material in the Saami languages (Aikio 2004), and a different
pre-Uralic substrate which heavily influenced the Samoyedic languages (e.g. He-
limski 1998). Given the ubiquity of such examples even in an area with a rather
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short post-glacial settlement history, it makes sense to have substrate relation-
ships occur so frequently in the simulated data.

5.4.2 Are the scenarios interesting?

The second question about the adequacy of the simulation model is whether the
simulated scenarios are difficult and varied enough to make the results of evalua-
tion interesting. To answer the first question, this section analyzes how well the
tree signal is recoverable from the overlap of cognate classes alone, and, answer-
ing the same question from a slightly different angle, how well the cognate class
boundaries coincide with phylogenetic units. Then, the identifiability of contact
events is analyzed in order to quantify the maximum performance that we could
hope an ideal system to achieve on the lexical flow inference task. For an an-
swer to the second question, the section goes through some phenomena that we
might expect to occur in actual linguistic histories of geographical areas where
several language families are neighbors for several millennia, and discusses to
what extent these phenomena also occur in the simulated data.

A very direct way of assessing the difficulty of phylogeny inference is to mea-
sure the recoverability of the tree signal from the cognate data. If the cognate
overlaps perfectly encode the tree structure, we should have |𝑐(𝐴, 𝐵)| > |𝑐(𝐴, 𝐶)|,
|𝑐(𝐵, 𝐶)| in all configurations where 𝐴 and 𝐵 are more closely related than either
is with 𝐶 , or more precisely, if the lowest common ancestor of 𝐴 and 𝐵 is a de-
scendant of the lowest common ancestors of 𝐴 and 𝐶 as well as 𝐵 and 𝐶 . In the
simulated scenarios, the cognate overlaps match the criterion for 89.32±6.87% of
such triples. On the automatically inferred cognates derived from NorthEuraLex
and the reduced Glottolog tree, the value is 82.28%, i.e. comparable in complex-
ity to the more difficult simulated scenarios. In the most difficult scenario, the
inequality only holds for 64.91% of triples, and the easiest scenario (with only
one contact in 5,000 years) has 100%. Given the presence of errors in automated
cognate judgments, it is hardly surprising that the NorthEuraLex task is on the
more difficult end of the scale.

A more strict measure of the difficulty of the inference task is the fit of cognate
set boundaries to phylogenetic units. More precisely, we are interested in the per-
centage of cognate sets which exactly correspond to the descendants of a single
phylogenetic node. Note that this correspondence is not only destroyed by bor-
rowing, but also by lexical replacement in one language of the unit, though the
latter situation will produce a new cognate set which is aligned to a phylogenetic
unit of trivial size. On the simulated scenarios, the distribution of this percent-
age can be summarized as 17.33 ± 4.98%. The value of 10.06% on NorthEuraLex
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cognates and the Glottolog tree is close enough to this distribution to provide
additional evidence that the simulated scenarios are quite realistic in difficulty.
However, the NorthEuraLex data are by this measuremore challenging even than
the worst of 50 simulated scenarios at 10.28%. This is again easily explainable by
the existence of erroneous automated cognacy judgments, as both false positives
and false negatives will destroy perfect alignments of cognate classes with phy-
logenetic units. On the tree signal, the errors apparently almost cancel out, not
detracting much from recoverability, whereas the matches of entire cognate sets
are much more sensitive to uncertain cognacy judgments. This has problematic
implications for algorithms building on cognate set overlaps, such as the lexical
flow inference procedure I will be exploring.

An important question to ask about the data concerns the identifiability of con-
tact events. How many of the contact channels still have visible consequences in
the living languages, in the sense that they are part of the histories of enough
words in living languages to go beyond the detection threshold of 20 loans? This
measure gives us an upper bound on the performance we could hope to achieve
with any algorithmwhich reconstructs previous reflexes of cognate sets and then
tries to infer contact events. In the simulated data, 67.6% of all simulated con-
tacts were still visible by this definition, resulting in an average of 49.68 ± 23.16
detectable contacts per scenario. This number implies that certainly enough in-
teresting contact patterns occur in the simulated data, and the consequences of
two thirds of these are still in principle detectable in the output data.

Finally, a fewwords can be said about the variability of patterns encountered in
the simulated data. Using graph terminology, there are 27,164 unshielded triples
in the gold standard flow graphs. 15.05% of these are colliders, where a single
language is influenced by two different languages. 550 (13.45%) of these collid-
ers connect languages which have not interacted in any way before. As we will
see in the next chapter, this type of collider is easily detectable using v-structure
tests, giving us very reliable directionality information.The problem is that out of
12,179 lateral connections whose directionality we will want to determine, only
870 take part in such strict colliders, and 4,088 lateral connections are part of any
type of collider. This means that we only have completely reliable directionality
information for 7.14% of these connections, and some direct evidence for 33.6%.
The directionality of two thirds of our lateral links would thus have to be deter-
mined by some form of constraint propagation, which will cause some problems
if our unshielded collider tests are not completely reliable. To sum up, the simu-
lated instances are definitely challenging enough to provide useful information
about the potential of causal inference for lexical flow inference.
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5.5 Potential further uses of simulated scenarios

Coming to phenomena of more immediate linguistic interest, we first consider
chains of loans, where lexical material is transmitted from one language to an-
other through a third language which serves as a bridge, whereas the first two
languages are not directly in contact. Such chains would mirror the phenomenon
of wanderwörter such as sugar or wine, which were not borrowed from one orig-
inal language into every language which now uses them, but travelled from lan-
guage to language together with the trade goods, reaching remote geographical
areas via trading intermediates. In the simulated data, 16.4% of words with a bor-
rowing history were borrowed twice, and 2.9% were borrowed three or more
times. There is thus a fair amount of wanderwort-like word histories in the data,
adding to the realism of the simulated scenarios.

Another phenomenon whose frequency is worthwhile to investigate is inter-
nal borrowing within the same language family, i.e. the situation in which a word
can be replaced by a cognate word. In the simulated data, because related lan-
guages are more likely to be neighbors, internal borrowing happens quite often,
so that in 26.280% of all generated borrowing events one cognate set was replaced
by the same set, not changing anything about the data. Across scenarios, this per-
centage was pretty stable at 29.531±5.80%, although there are some outliers with
the maximum at 67.3%. Set-internal borrowings are obviously a problem for con-
tact detection algorithms which work on the level of cognate sets, because such
borrowings do not leave any detectable traces.

5.5 Potential further uses of simulated scenarios

In addition to their usage as test cases for evaluating my methods, other re-
searchers might want to use simulated scenarios as generated by my model as
well. For instance, because each event during the simulation is logged in a for-
mat which allows the complete history of each word to be tracked explicitly,
it becomes possible to evaluate loanword detection algorithms on much larger
datasets than the real datasets which are currently and will ever be available.

This also applies to the comparative evaluation of methods and algorithms for
tasks wich are closely related to lexical flow inference, such as the inference of
different types of phylogenetic networks. In this context, the simulation could
be used to assess the impact of lateral transfer on the reliability of phylogenetic
inference methods, e.g. for practical experiments reinforcing the empirical find-
ings by Greenhill et al. (2009) or the mathematical results of Roch & Snir (2012),
both indicating that phylogenetic inference is quite robust to realistic amounts
of lateral transfer.
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5 Simulating cognate histories

For all these purposes, the simulated scenarios are distributed together with
this book in various standard formats (trees in Newick format, cognacy data in a
Nexus format readable by the most common software tools in phylogenetic infer-
ence). Moreover, my Java programs for generating more scenarios of this type, as
well as the parsers for the log files which are necessary to extract statistical infor-
mation of the type I was covering in this chapter, will be packaged and released
as standalone executables along with their source code in order to allow other
researchers to adapt the simulation model to their requirements, or experiment
with different parameter settings than the ones I have been operating on here.
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6 Phylogenetic lexical flow inference

In many respects, this chapter represents the core of this book. It discusses both
the idea of and the methodological difficulties in applying causal inference to
data in the shape of overlapping cognate sets in detail, before defining PLFI (phy-
logenetic lexical flow inference), the first of two algorithms I describe in this book,
and then evaluating it on both NorthEuraLex and the simulated scenarios.

This algorithm requires adding reconstructions of all known proto-languages
to the model, which makes it causally sufficient, allowing me to work with the
much simpler PC algorithm, and postponing the need to get into the complexities
of the RFCI algorithm to the next chapter.

In §6.1, I discuss possible ways of modeling lexicostatistical data as statistical
or information-theoretic variables, and motivate my decision to stick to coarse-
grained cognate overlap judgments for the purposes of this book. §6.2 then intro-
duces my cognate-based information measure, which allows me to derive a very
natural measure of conditional mutual information between languages in §6.3.

Sections 6.4 and 6.5 are concerned with ways to specialize parts of the PC
algorithm in order to balance out assumptions that are not met by conditional
independence tests based on this measure. These include the development of an
explicitly flow-based criterion for defining plausible separating sets, and of two
heuristic criteria for aggregating evidence of directionality.These criteria become
necessary because the separating set membership criterion of the PC algorithm
is found to be too unstable on cognacy overlap data.

§6.6 describes how I arrived at the guide tree for my experiments on North-
EuraLex, which is then used in §6.7 to perform ancestral state reconstruction in
order to create the data for the proto-languages. Before deciding on maximum-
likelihood construction as the basis of the PLFI algorithm, I evaluate several al-
ternatives on the simulated data from Chapter 5.

§6.8 then puts the results of the previous sections together to define the PLFI
algorithm, which is finally evaluated in the last section of this chapter, both on
the NorthEuraLex gold standard developed in Chapter 4, and the simulated data
from Chapter 5.



6 Phylogenetic lexical flow inference

6.1 Modeling languages as variables

Everything starts with the idea of detecting conditional independence relation-
ships between sets of languages, making it possible to apply causal inference
algorithms to the lexical flow inference task. To take up the idea foreshadowed
by the language examples in Chapter 3, I will assume the lexicon of each language
to quite literally be caused by the lexicon of its ancestor language and possibly
other languages which influenced its development. Put differently, the model is
intended to determine how the lexicon of a language came about as a mixture
of lexical material from other languages, and summarize the results in a causal
graph.

As the crucial step towards this goal, we need a formalism which makes it
possible to treat languages as information-theoretic variables. Depending on a
range of choices about how we model languages, there are many possibilites to
define useful measures of information content and mutual information between
languages. While a single rather simple measure on cognate sets will be used
later, in this section the idea will be put into a wider context by discussing more
generally the different ways in which languages might be treated as statistical or
information-theoretic variables.

6.1.1 Languages as phoneme sequence generators

The reductionist premise of lexicostatistical databases is to view each language
simply as a (possibly many-to-many) mapping from concepts to lexical realiza-
tions. This means we could treat languages as variables generating sequences of
phoneme n-grams, and measure information-theoretically how much about the
generated sequence in one language we know given the sequence generated by
another language. For unrelated languages, we could expect the mutual informa-
tion to be not significantly different from zero. A significance threshold for an
independence test could be based on the amount ofmutual informationwewould
expect if the two word lists were randomly sampled from the two languages.

The question what a good sampling procedure would look like, is quite in-
volved, and again depends on how we model the generated phoneme sequences.
The most straightforward way to model the phoneme emission would be to use
n-gram distributions, to treat concept realizations as events producing bags of n-
grams, and measure the mutual information between the resulting distributions.
This is a formal answer to the intuitive question: given the n-grams for a realiza-
tion of some concept in language A, how much on average do we already know
about the realization of the same concept in language B? To come back to one
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6.1 Modeling languages as variables

of our examples from Chapter 3, the phonetic bigram representations of slange
[slɑŋə] and Schlange [ʃlɑŋə], the Danish and German words for ‘snake’, share
three out of four elements ({[lɑ], [ɑŋ], [ŋə]}, giving them a very high mutual in-
formation, whereas knowing either word does not help us at all to predict the
Finnish equivalent käärme [kæærmɛ], which does not share a single bigramwith
the Germanic words.

While this is an attractive idea, initial exploratory experiments quickly show
that the information content of n-gram overlaps is not very high. For instance,
the global bias towards CVCV-type syllable structures will lead to spurious mu-
tual information, as e.g. CV-type bigrams such as [pa] or [ku] will always be
more common than CC or VV-type n-grams.

The realization-basedmutual informationmeasure can be somewhat improved
upon by building it only on aligned positions. Essentially, we optimally align
all the realizations for each pair of languages, count how often each pair of n-
grams (for reasons of data sparseness, only unigrams and bigrams are feasible)
is aligned, and compare this to the distribution we would expect if the words
were randomly chosen. Again, the threshold needs to be computed by resam-
pling, because the two n-gram distributions computed in this way will not be
independent due to the fact that the alignment algorithm will always find some
vowels (and often some consonants) to align even in completely random and un-
related words. In exploratory experiments, the necessary threshold turned out to
be so high that the common signal between languages from different branches of
Indo-European could not be distinguished from noise. While it might be possible
to arrive at a sufficiently sensitive independence test by refining this approach,
the process is hampered by the fact that error causes are very difficult to track
down and interpret in such a model.

6.1.2 Languages as cognate set selectors

A third possibility (and the one which I am going to build upon) starts with struc-
tures that are situated one step higher in the usual toolchain of computational
historical linguistics. Assume we have a good cognate detection method in place.
Then, we can use this module to group the realizations of each concept 𝑖 into a
set of cognate sets 𝐶𝑜𝑔𝑖 ∶= {𝑐𝑜𝑔𝑖,1, … , 𝑐𝑜𝑔𝑖,𝑛𝑖 }.

In terms of a probabilistic model, this leaves us with a quite complex chain of
random variables building on the basic view of languages as string generators.
For each language 𝑗, we could start with a lexicon generator variable 𝐿𝑒𝑥𝑗 ∶ Ω →
Σ∗ for some universal alphabet Σ of phonetic symbols. Possible observations of
such a variable could be phonetic strings such as [æææ], [ktkəəŋ], and infinitely
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6 Phylogenetic lexical flow inference

many other highly improbable strings. Alternatively (and especially to model re-
sampling), 𝐿𝑒𝑥𝑗 can be defined as selecting strings from a predefined set 𝐿𝑗 ∈ Σ∗
containing all the strings of the lexicon, that is, in our case, a phonetic represen-
tation of all the lemmas in our database. On the NorthEuraLex data, the English
variable would generate words such as [taʊn], [fiːvə], [hɛvɪ], [aɪ], but the assign-
ment of these forms to meanings would be assumed to be entirely random.

Any automated cognate detection procedure can now be conceptualized as a
very complex function of all the lexicon generator variables which generates a
set of cognate sets for each concept 𝐶𝑖 :

𝑐𝑜𝑔(𝑋1, … , 𝑋𝑛) ∶ Ω →
𝑛

⨂
𝑖=1

℘(
𝑚
⋃
𝑗=1

𝐿𝑒𝑥𝑗)
∗

Unrelated languages can now be seen as independently sampling one or several
of these cognate sets for each given concept. For related languages, we should
then be able to measure a dependence in the form of non-zero mutual informa-
tion. Intuitively, the more closely two languages are related, the more knowing
which cognate sets one language picked will help us to predict the sets picked
by the other language. If we know for one Germanic language (such as German)
that it picked its word for ‘honey’ from the cognate set of English honey, this will
be much more helpful for predicting to which class the Icelandic word will be-
long, than knowing the cognate set of the equivalent in a more distantly related
language like Greek.

Mathematically, we can now model each language 𝐿𝑗 as a variable picking for
each concept a random subset of the set of cognate sets, i.e.:

𝐿𝑗 ∶ Ω →
𝑛

⨂
𝑖=1

℘(𝐶𝑜𝑔𝑖)

From a probabilistic point of view, this is the shape of the variables I am going to
operate on, although it would be very difficult to assign explicit joint probability
distributions to sets of such variables. Instead, I will only use an information
geometry on these variables.

6.2 A cognate-based information measure

We now turn to the question of how to estimate conditional mutual information
between languagesmodeled as cognate set selectors.The basic idea is to define an
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6.2 A cognate-based information measure

easy-to-compute and intuitive measure ℎ on outcomes of cognate set selection,
which mimics joint entropy in adhering to the basic properties of a submodular
information measure. Based on this measure, I will then be able to define an
equivalent of conditional mutual information between languages.

A simple information content measure 𝑖 turns out to be easy to find: one can
simply define 𝑖(𝐿𝑗) for a language variable 𝐿𝑗 as the number of cognate sets se-
lected by the language across concepts:

𝑖(𝐿𝑗) ∶=
𝑛
∑
𝑖=1

|𝐿𝑗,𝑖(𝜔)|

I will treat this definition as the self-information of 𝐿𝑗 , i.e. the outcome of a ran-
dom variable measuring the entropy of language 𝐿𝑗 . There is a very intuitive
parallel between this measure and the view of entropy as a measure of descrip-
tive complexity: given a set of concepts and a set of cognate sets for each concept,
the minimum description length for the lexicon of 𝐿𝑗 can be seen as the length of
the minimal specification of the mapping from concepts to cognate sets, which
will be linear in the number of cognate sets touched by the language.

The equivalent of the joint entropy ℎ(𝐿𝑗 , 𝐿𝑘) can now be defined as the num-
ber of cognate sets selected by one of the two languages, i.e. the union of the
outcomes represented by both languages:

ℎ(𝐿𝑗 , 𝐿𝑘) ∶=
𝑛
∑
𝑖=1

|𝐿𝑗,𝑖(𝜔) ∪ 𝐿𝑘,𝑖(𝜔)|

Analogously, we can define ℎ(Z) for all subsets Z = {𝑍1, … , 𝑍𝑚} ⊆ ℒ of our set of
languages ℒ . In Appendix C, I show that this measure adheres to the elemental
inequalities defining a submodular informationmeasure. According to the theory
introduced in §3.2.2.3, this establishes that themeasure ℎ(Z) for a set of languages
Z = {𝑍1, … , 𝑍𝑚}, is similar enough to a measure of joint information to lead to a
consistent definition of conditional mutual information.

We have seen previously how cognacy data can be pictured as representing
each language as a long binary vector in which each dimension represents a
cognate set, and the values 1 and 0 represent the presence or absence of each
cognate set in that language. By the information measure just introduced, the in-
formation content 𝑖(𝐿𝑗) of a language 𝐿𝑗 is then simply the number of ones in its
vector representation, and the joint entropy is the number of ones in the disjunc-
tion of the language vectors, i.e. the vector which has a zero in the components
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6 Phylogenetic lexical flow inference

where every language vector has a zero, and a one in all components where at
least one language vector has a one. This representation is of course very sparse,
since there will sometimes be dozens of cognate classes for any given concept
observed across a hundred languages. Measures based on such a representation
can be expected to be very prone to sampling errors, e.g. if a cognate for a word
exists in a language, but simply was not attested in our lexical resource, or it has
shifted slightly in meaning, which is why we do not observe the full path.

Structurally, these problems are very similar to the reasons why the idea of
learning more dense embeddings of such sparse vectors in a lower-dimensional
space has gained a lot of traction in computational linguistics, leading to a vari-
ety of techniques for distributed representations which are summarized e.g. by
Goldberg (2016). The general idea of applying embeddings here would be to find
a good representation of the cognacy features for each concept as vectors in a
lower-dimensional vector space, so that concepts which pattern similarly across
languages will have similar representations. The representations of the cognate
sets picked by a language would then be concatenated to form a more dense lan-
guage vector. This procedure allows information sharing between cognate set
presence or absence features, which would not only correct for the fact that the
features are not independent (because generally, already having a word from cog-
nate class A for some concept makes it less likely that it will also have a word
from cognate class B for it), but also provide a way of smoothing out gaps in the
data based on the knowledge provided by similar languages (e.g. predicting that
the word for ‘honey’ in any Germanic language will belong to the same cognate
class as English honey, even if for some reason there is a gap in the database).

On such embedded cognacy vectors, conditional independence tests could be
defined e.g. through cosine similarities or Pearson correlations (after centering),
but it would also very likely be possible to define a joint entropymeasure ℎ(𝐿𝑗 , 𝐿𝑘)
based on combinations of embedding-based language vectors. While given the
experience in mainstream areas of natural language processing, such representa-
tions would very likely yield better results due to better information sharing, its
results would no longer be interpretable in terms of discrete lexical transmission
events, and the resulting notion of lexical flow would only be a very abstract
information-theoretic measure instead of being directly mappable to the paths
by which certain words traveled. In this book, I will therefore only explore the
count-based joint entropy measure defined above, and leave the exploration of
embedding-based measures to future work.
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6.3 Conditional mutual information between languages

6.3 Conditional mutual information between languages

To arrive at the needed measure of conditional mutual information 𝑖(𝐿𝑖 ; 𝐿𝑗 |Z), I
can now simply use the standard definition on the information measure:

𝑖(𝐿𝑖 ; 𝐿𝑗 |Z) = ℎ(𝐿𝑖 ,Z) + ℎ(𝐿𝑗 ,Z) − ℎ(𝐿𝑖 , 𝐿𝑗 ,Z) − ℎ(Z)

Applying the definition of ℎ I just developed, and writing 𝑐𝑜𝑔(𝐿1, ..., 𝐿𝑘) for the
set of cognate sets shared by the languages 𝐿1, … , 𝐿𝑘 , 𝑖 becomes a count of condi-
tional cognate overlap, which can be seen intuitively as the number of items in
unblocked lexical flow. Note that the blocking of information flow was also the
intuition behind the concept of d-separation which I introduced in §3.2.1.2, and
the close correspondence between conditional independence constraints and d-
separation in Bayesian networks is what will make it possible to infer networks
via sequences of tests for vanishing conditional cognate overlap.

In order to be able to define a global threshold value for conditional indepen-
dence tests, conditional mutual information needs to be normalized by the num-
ber of remaining cognates not touched by any of the conditioning languages,
yielding the normalized conditional mutual information 𝐼 (𝐿𝑖 ; 𝐿𝑗 |Z):

𝐼 (𝐿𝑖 ; 𝐿𝑗 |Z) ∶=
|𝑐𝑜𝑔(𝐿𝑖 , 𝐿𝑗)\{𝑐 | ∃{𝑍1, … , 𝑍𝑘} ⊆ Z∶ 𝑐 ∈ 𝑐𝑜𝑔(𝑍1, … , 𝑍𝑘)}|

max{|𝑐𝑜𝑔(𝐿𝑖 , 𝑍1, … , 𝑍𝑘)|, |𝑐𝑜𝑔(𝐿𝑗 , 𝑍1, … , 𝑍𝑘)|} − |𝑐𝑜𝑔(𝑍1, … , 𝑍𝑘)|
Informally, 𝐼 (𝐿1; 𝐿2|𝑍 ) thus quantifies the share of cognates between 𝐿1 and 𝐿2

which cannot be explained away by having been borrowed through a subset of
the languages in 𝑍 . To use this measure of dependence as a conditional indepen-
dence test, we simply check whether 𝐼 (𝐿1; 𝐿2|𝑍 ) ≤ 𝜃𝐿1,𝐿2 for a threshold 𝜃𝐿1,𝐿2 ,
which could be derived from the number of false cognates between 𝐿1 and 𝐿2
which we expect due to automated cognate detection. In practice, I am setting
𝜃𝐿1,𝐿2 ∶= 0.025 for all language pairs because the distribution of false cognates
is difficult to estimate, and language-specific thresholds did not lead to better
results in initial experiments on a smaller language set. On the NorthEuraLex
data, this means that languages which share 25 cognates or less will be uncon-
ditionally independent, and every link the algorithm establishes will explain an
overlap of at least 26 cognates.

Based on this conditional independence test, the first stage of the PC algorithm
will derive a causal skeleton which represents a scenario of contacts between
pairs of input languages that is only as complex as necessary to explain the lexical
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overlaps.Themodel thus assumes that all similarities are primarily due to mutual
influence, and never infers the existence of hidden common causes, such as proto-
languages. As we shall see, to arrive at a phylogenetic network, we will need to
introduce the proto-languages as additional variables.

6.4 Improving skeleton inference

When applying my newly developed conditional independence test to small test
cases, it quickly becomes clear that they do not reflect the constraints defined by
the gold standards very well. The main problem for skeleton inference is the way
in which separating set candidates are selected in the PC and PC* algorithms. In
this section, I develop an alternative to these two standard candidate selection
techniques, and a comparison of the performance of all three variants will be
part of the evaluation at the end of this chapter.

6.4.1 Problem: stability on discrete information

The PC algorithm as presented in §3.2.3 is only tractable because it tests separat-
ing set candidates by ascending order of cardinality, and builds on the assump-
tion that any separating set must be a subset of immediate neighbours of 𝐿𝑖 and
𝐿𝑗 in the current skeleton. Conditioning on any set of neighbours is possible in
the vanilla PC algorithm because the faithfulness assumption implies that true
dependencies will always “shine through”, nomatter howmany intervening vari-
ables we condition on. For our model, this is a problematic assumption, because
being allowed to select any neighbours makes it too easy to screen off languages
from each other in our information geometry of limited granularity.

A small simplified example based on the NorthEuraLex data will show why
this is a problem for skeleton inference. In the gold standard, there is a contact
link betweenNorwegian (nor) and Southern Saami (sma). In the cognacy data, we
have |𝑐𝑜𝑔(nor ,sma)| = 114, i.e. the two languages share 114 cognate sets, of which
some are false positives, but most reflect North Germanic loans. At some stage of
skeleton inference, sma is still connected to its neighbour Northern Saami (sme),
and one of the remaining neighbours of nor is Swedish (swe). Now, most of the
North Germanic material is of course also present in Swedish, leaving a quite
high overlap |𝑐𝑜𝑔(sma,swe)| = 111, a large part of which is shared between all
three languages: |𝑐𝑜𝑔(nor ,sma,swe)| = 96. Using these overlaps, we first get a
successful conditional independence test (nor ⟂⟂ sma | swe), because
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𝐼 (nor; sma | swe) = |𝑐𝑜𝑔(nor) ∪ 𝑐𝑜𝑔(swe)| + |𝑐𝑜𝑔(sma) ∪ 𝑐𝑜𝑔(swe)|
max(|𝑐𝑜𝑔(nor) ∪ 𝑐𝑜𝑔(swe)|, |𝑐𝑜𝑔(sma) ∪ 𝑐𝑜𝑔(swe)|) − |𝑐𝑜𝑔(swe)|

− |𝑐𝑜𝑔(nor) ∪ 𝑐𝑜𝑔(sma) ∪ 𝑐𝑜𝑔(swe)| + |𝑐𝑜𝑔(swe)|
max(|𝑐𝑜𝑔(nor) ∪ 𝑐𝑜𝑔(swe)|, |𝑐𝑜𝑔(sma) ∪ 𝑐𝑜𝑔(swe)|) − |𝑐𝑜𝑔(swe)|

= 18
1008 = 0.018

Now, after deleting the link nor — sma due to the successful test, the neigh-
bour relation between Norwegian and Swedish persists, also giving us (swe ⟂⟂
sma | nor), so that the resulting skeleton lacks any hint of the contact between
North Germanic and Western Saami.

This example demonstrates that for skeleton inference to work on my coarse-
grained data, the decision to remove a link between two languages should not
be based only on the numbers of cognates shared with some set of immediate
neighbours. The PC* algorithm already goes one step towards the solution by
considering only neighbours on connecting paths, but this will not solve the
problem in this case, either: There is a connecting path nor — swe → fin ◦→
sme — sma, which would also make swe a possible element for separating set
candidates, causing exactly the same problem.

6.4.2 Flow Separation (FS) independence

We will now see how it is possible to at least partially correct for the lack of
faithfulness by exploiting the fact that we have more than just a single con-
ditional mutual information value to perform each conditional independence
check. 𝐼 (𝐿𝑖 ; 𝐿𝑗 |Z) is computed from as many as 1,016 individual “concept stories”
which provide us with a much richer picture of what is going on, and can help
us to quantify the information flow much more precisely. To explain away a cog-
nate that is shared between two languages 𝐿𝑖 and 𝐿𝑗 , it must have been possible
for the lexeme in question to have travelled between the two languages on some
other path. Therefore, any minimal separating set must form a union of acyclic
paths between 𝐿𝑖 and 𝐿𝑗 . In effect, this constitutes an explicit model of the lexical
flow helping us to decide more reliably which links can be deleted. In our exam-
ple case, we now get 𝐼 (nor ; sma | ℒ \{nor ,sma}) = 0.051, i.e. the link will correctly
not disappear whichever separating set candidate we condition on.

The adapted mutual information measure will be called flow separation (FS).
Adopting the convention of using two-letter shorthands for the different skele-
ton inference methods, PC will be used for the vanilla PC variant, and PS as a
shorthand for PC* (“PC-Star”). My implementation of FS uses a depth-first search
of the current graph to get all connecting paths which contain four nodes or less,
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and generates all combinations of these paths which lead to separating set candi-
dates of a given cardinality. Longer paths would need to be considered in theory,
but did not lead to different results on my data, at a much higher computational
cost. The cognate sets for each concept are tested separately against these paths
in a highly optimized fashion, making the FS-based independence test not signif-
icantly slower than the PC and PS variants.

6.5 Improving directionality inference

Similar problems in applying the vanilla PC algorithm face us in directionality
inference, the second stage of constraint-based causal inference algorithms. The
two standard v-structure detection procedures which were already introduced in
Chapter 3, will from now on be referred to as VPC (Vanilla PC) and SPC (Stable
PC). Both of these variants build on the separating sets used to infer the skeleton,
but the uncertain nature of independence checks on our data again forces us to
explore alternative approaches. The first variant only replaces v-structure detec-
tion and then works with the propagation rules from Stage 3 of the PC algorithm,
and the second variant I will introduce here tries to infer the directionality signal
independently of the skeleton. In both cases, the basic idea behind directionality
detection will still be informed by the theory of causal inference.

6.5.1 Problem: monotonic faithfulness and v-structures

To recapitulate, in the second stage of the PC algorithm and related algorithms,
VPC and SPC directionality inference on the causal skeleton is performed by
asking whether the central language 𝐵 in each pattern of the form 𝐴— 𝐵—𝐶
was part of the separating set that was used for explaining away the link 𝐴—𝐶 .
The idea is that if 𝐵 was not necessary to explain away any possible correlation
between 𝐴 and 𝐶 (i.e. there is a separating set not containing 𝐵), this excludes all
causal patterns except 𝐴 → 𝐵 ← 𝐶 . This is based on the assumption that in each
of the three other possible causal scenarios, we would see some information flow
between 𝐴 and 𝐶 if we do not condition on 𝐵.

This type of reasoning is again justified by the causal faithfulness assumption,
which states that we can derive exactly the conditional independence relations
implied by the true graph through d-separation. More specifically, the scenario
𝐴 → 𝐵 ← 𝐶 would be characterized by the conditional independences 𝐴 ⟂⟂ 𝐶
and (𝐴 ⟂⟂/ 𝐶 | 𝐵), whereas (𝐴 ⟂⟂ 𝐶 | 𝐵) would hold in all other scenarios for the
unshielded triple 𝐴 − 𝐵 − 𝐶 .
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Unfortunately, this version of faithfulness only holds in the probabilistic case,
and does not apply to information-theoretic causal inference. If we have𝐴 ⟂⟂ 𝐶 , it
necessarily follows that (𝐴 ⟂⟂ 𝐶 | 𝐵), which means that we will never encounter
the pattern characterizing 𝐴 → 𝐵 ← 𝐶 , because of a spurious independence
(𝐴 ⟂⟂ 𝐶 | 𝐵) that is not induced by d-separation. In our application to languages,
the problem can be made intuitive by stating that additional languages can only
be used to “explain away” cognates for a given language pair, but we will never
find additional cognates given the information from other languages.

Steudel et al. (2010) show that the independence relations derived from a sub-
modular information measure still follow a weaker notion of faithfulness, which
they callmonotone faithfulness. Monotone faithfulness relaxes the enforced corre-
spondence between d-separation and conditional independences by only requir-
ing that (𝐴 ⟂⟂ 𝐶 | B) implies d-separation of 𝐴 and 𝐶 by a set B if B is minimal
among all conditioning sets that render 𝐴 and 𝐶 independent. It turns out that
the correctness proof for the PC algorithm can be adapted directly to show that it
will return monotonically faithful representations if the input consists of mono-
tonically faithful observations.

So what does this mean for the results of the PC algorithm on my cognate
data? Even the weaker requirement of monotonic faithfulness still implies the
very strong assumption that every scenario in which𝐴 has an influence on 𝐵 and
𝐵 on 𝐶 , this would become visible as a dependence between 𝐴 and 𝐶 (because 𝐴
and 𝐶 would not be d-separated by the empty set). While this assumption may be
unproblematic for continuous statistical variables, we cannot expect it to hold for
my information-theoretic notion of independence. Again, the underlying prob-
lem is that I am modeling languages (and mutual information between them)
as discrete sets of entities (or their overlap), which is far too coarse-grained to
detect clean and consistent causal signals.

The assumptions behind the PC algorithm therefore imply the following state-
ments which do not hold for languages:

• If two unrelated languages borrow from a third language (𝐴 ← 𝐵 → 𝐶),
some words will always be borrowed into both languages (𝐼 (𝐴; 𝐶) ≠ 0).

• If one language influences another one which in turn influences a third
one (𝐴 → 𝐵 → 𝐶), this will always cause some lexical material to be
transferred from the first one to the third (𝐼 (𝐴; 𝐶) ≠ 0).

While the first assumption might be defendable in my model (it is indeed very
common that e.g. a language with state support leaves some common core of
lexical items in all minority languages), the second one is extremely problematic,
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since it is easily conceivable that if a language 𝐴 borrows from a language 𝐵
which in turn borrows from a language 𝐶 , none of the lexical material from 𝐶
will appear in 𝐴, especially if there is a temporal order to these contacts.

For our information-theoretic language variables, the inadequacy of the faith-
fulness assumption leads to many erroneous v-structures and a chaotic picture
if we apply the second stage of the PC algorithm as is. In addition, since there
will often be many separating sets of the same size, we are quickly faced with
a well-known weakness of the PC algorithm: The results of its second stage are
highly dependent on the order in which separating set candidates are tried out.
In practice, this means that many possible orders have to be tested, often giving
rise to conflicting evidence which needs to be reconciled. Crucially, this implies
that we cannot directly rely on the separating sets to detect v-structures in a way
that is robust enough for propagation as in the PC algorithm. Instead, we need a
more robust way of detecting v-structures in cognate overlap patterns.

6.5.2 Unique Flow Ratio (UFR): flow-based v-structure testing

Above all, it is the lack of reliability in the independence tests which will lead to
chaotic results if the separating set criterion is applied in the standard way. This
lack of reliability is partially caused by erroneous cognacy judgments (which
could be improved by hand-crafted annotations), but more importantly by a lack
of statistical power in tests which involve distantly related languages, i.e. where
the lexical overlaps only consist of a handful of items. But, even if the indepen-
dence tests are correct (and they are more likely to be thanks to the FS criterion),
there are typically many alternative separating sets, indicating that not much
useful information can be extracted from the fact that a language was contained
in some separating set.

To improve on the situation, and develop an alternative v-structure test which
gets the maximum out of the little data I have available in my application, I need
to get back to the motivation why the PC-algorithm and its variants detect v-
structures by considering separating sets in unshielded triples. The essential idea
justifying the inference of a v-structure 𝐴 → 𝐵 ← 𝐶 was to decide whether 𝐵
was necessary to separate 𝐴 and 𝐶 by inspecting the separating sets, and seeing
whether 𝐵 was in all (VPC) or the majority (SPC) of them.

Can this basic idea be applied more directly to the cognate set overlaps be-
tween languages? It turns out that a flow-based criterion can also help us here,
as we can explicitly calculate howmuch of the overlap between𝐴 and 𝐶 can only
be explained via paths involving 𝐵 on the causal skeleton. The essential idea is
thus the same as the one behind the flow-separation independence test.
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Let 𝑐(𝐿1, … , 𝐿𝑘) ∶= |𝑐𝑜𝑔(𝐿1, … , 𝐿𝑘)| be the number of cognate IDs shared be-
tween between all the languages 𝐿1, … , 𝐿𝑘 , and define 𝑐(𝐴 − 𝐵 − 𝐶) (the unique
flow) as the number of cognates which no path excluding 𝐵 could have trans-
ported between 𝐴 and 𝐶 . Now, we can quantify the answer to the question how
much 𝐵 is needed to remove 𝐴—𝐶 based on the answers of two simpler ques-
tions. The first question is whether there is as much unique flow as expected if 𝐵
were needed for the separation.This can be captured by a single score measuring,
with appropriate normalizations, the strength of unique flow in comparison to
the flowwewould expect if the true pattern were𝐴→𝐵→𝐶 or𝐴←𝐵→𝐶 , i.e.
if both arrows represented independent sampling of a certain number of items
in the donor language, and the transmission of the sampled material in the re-
cipient language. Due to the independence, the expected ratio of material shared
between all three languages can be computed as the product of the two ratios
on the links, leading to the following score quantifying how much of potential
overlap is reflected by unique flow through 𝐵:

𝑢𝑓 𝑟1 ∶=
𝑐(𝐴−𝐵−𝐶)

min(𝑐(𝐴),𝑐(𝐵),𝑐(𝐶))
𝑐(𝐴,𝐵)

min(𝑐(𝐴),𝑐(𝐵)) ⋅
𝑐(𝐵,𝐶)

min(𝑐(𝐵),𝑐(𝐶))
A second question about the relevance of 𝐵 for separation is how relevant the

flow through 𝐵 is for generating the actual overlap between the three languages,
i.e. which ratio of the cognates shared can only be explained by transmission
through 𝐵. This leads to a simple quotient as the second score:

𝑢𝑓 𝑟2 ∶=
𝑐(𝐴 − 𝐵 − 𝐶)
𝑐(𝐴, 𝐵, 𝐶)

While 𝑐(𝐴 − 𝐵 − 𝐶) is quite costly to compute, it has the advantage of not
requiring reuse of unreliable separating sets, and being determined only by the
data and the skeleton. Based on these two quantitative answers to the partial
questions, I can define a combined score by multiplication, as a good v-structure
should score low on both measures:

𝑢𝑓 𝑟 ∶= 𝑢𝑓 𝑟1 ⋅ 𝑢𝑓 𝑟2
To observe the behavior of thisUnique Flow Ratio (UFR) score, and to determine

a good threshold for v-structure decisions, I produced five additional histories
using the simulation model of Chapter 5, and extracted all triples of connected
variables in the gold-standard graph. For these triples, it is thus known whether
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they constitute colliders or not, providingmewith a training set of 1,277 instances
in order to determine the threshold value. To make the test cases more realistic,
I emulated the noise level inherent in automatically clustered cognate data by
adding a number of spurious cognates to each pairwise overlap. This noise for
each link was sampled uniformly from between 0 and 20 additional cognates.
The resulting distribution of 𝑢𝑓 𝑟 scores for both colliders and non-colliders is
visualized in Figure 6.1. The distribution shows that as intended, almost all 𝑢𝑓 𝑟
values for colliders are very close to zero. In contrast, the values for non-colliders
are distributed equally across the entire value range [0,1], with highest densities
near 0.1 and 0.95, i.e. near the extreme values, but only a tiny fraction are as low
as typical collider scores.
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Figure 6.1: UFR scores for collider and non-collider test instances

Analysing the precision-recall tradeoff on the 𝑢𝑓 𝑟 values, the optimal thresh-
old in terms of F-score was found to be as low as 0.004. This is the value I chose to
adapt, so that the test 𝑢𝑓 𝑟 < 0.004 constitutes the UFR criterion for v-structure
detection.

6.5.3 Triangle Score Sum (TSS): aggregating directionality hints

Another possibility to stabilize directionality inference is to move away from
the framework of propagating binary v-structure decisions, instead embracing
the fact that on noisy data, the different triples that each link in the skeleton
takes part in may yield conflicting evidence of different strength. The obvious
idea then is to quantify the directionality evidence present in each triple, and
to combine these scores into an aggregate measure where conflicting evidence
cancels out, and random spurious patterns in a single triple are overwritten by
a larger number of more well-behaved triples. The basic quantification of direc-
tionality evidence in a triple can again be expressed in terms of the difference
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between the three-way overlap we observe, and the overlap we would expect in
a non-collider.

If we continue to only consider the unshielded triples that are still present in
the skeleton, and try to aggregate an evidence score from these measures, we are
frequently faced with the problem that there is an unshielded triple only for one
direction, or that there is a severe imbalance in evidence strength for both sides.
This means that small errors in the skeleton can still propagate into large errors
in directionality inference.

This leads to the idea of not considering only unshielded triples, but all sets of
three languages in the dataset for deciding each link, making the directionality
inference step independent from skeleton inference. The resulting score infers
for every pair of languages in the entire graph whether a connection between
them would look directional, based on the triangle scores of that pair with every
other language.

In the discussion that follows, shorthands will be used to compactly represent
the relevant overlap quantities. For the shared material between each pair of vari-
ables, we use the Greek letter corresponding to the member of the triple that is

not involved, i.e. 𝛼 ∶= 𝑐(𝐵,𝐶)
min(𝑐(𝐵),𝑐(𝐶)) , 𝛽 ∶= 𝑐(𝐴,𝐶)

min(𝑐(𝐴),𝑐(𝐶)) , and 𝛾 ∶= 𝑐(𝐴,𝐵)
min(𝑐(𝐴),𝑐(𝐵)) .

In addition, I will use 𝛿 ∶= 𝑐(𝐴,𝐵,𝐶)
min(𝑐(𝐴),𝑐(𝐵),𝑐(𝐶)) for the amount of information shared

between all three variables. In the notation, the hat diacritic will be used to de-
note expected overlaps, as opposed to observed values. I will be predicting the
expected value ̂𝛿 for the overlap based on the other observable overlap ratios,
and then derive a quantification of the evidence against the assumed collider
from the difference between observed 𝛿 and expected ̂𝛿 .

Let us now derive an approximate expression for ̂𝛿 in the pattern 𝐴→𝐵←𝐶 ,
which in the absence of latent variables is the only v-structure scenario.The only
way in which a cognate set can come to be shared between all three languages in
this scenario is if it was already shared between 𝐴 and 𝐶 , and was borrowed into
𝐵 from one of the two languages. The percentage of material shared between 𝐴
and 𝐶 is given by 𝛽 , and the percentage of material in 𝐵 borrowed from 𝐴 and 𝐶
is simply 𝛾 and 𝛼 , respectively. Assuming independent sampling, the percentage
of items which end up in 𝛿 via the transfer 𝐴→𝐵 should be equal to 𝛾 ⋅ 𝛽 , and
the percentage transmitted via 𝐶 →𝐵 should be 𝛼 ⋅ 𝛽 . When we simply add up
these percentages, we will count some of the expected transferred items twice.
The probability for each element in 𝑐𝑜𝑔(𝐴, 𝐵, 𝐶) to have been selected twice is
simply 𝛽 , because this is the probability that a random element picked for transfer
from 𝐴 or 𝐶 is shared by both nodes. We therefore expect 𝛿 ⋅𝛽 items to have been
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counted twice. Using this as a correction, we receive ̂𝛿 = 𝛾𝛽 +𝛼𝛽 − ̂𝛿𝛽 . Resolving
this expression for ̂𝛿 , we arrive at the following equation for the expected three-
way overlap in a collider:

̂𝛿(𝐴→𝐵←𝐶) ∶= 𝛽(𝛼 + 𝛾)
1 + 𝛽

Note that we considered the shielded case here. The situation of an unshielded
triple is covered by 𝛽 ∶= 0, which causes the definition to collapse to ̂𝛿 = 0,
capturing the intuition I already used in UFR, namely that a v-structure should
result in zero three-way overlap that cannot be explained by other paths.

Turning the fitting of 𝛿 to ̂𝛿 into a fit score could be done in a number of
ways, but the easiest way turned out to be to form the quotient of the smaller by
the larger of the two values, with special treatment for boundary cases to avoid
division by zero:

𝑡𝑠(𝐴→𝐵←𝐶) ∶= {1 −
min(𝛿, ̂𝛿(𝐴→ 𝐵← 𝐶))
max(𝛿, ̂𝛿(𝐴→ 𝐵← 𝐶)) if 𝛿 > 0 or ̂𝛿(𝐴→𝐵←𝐶) > 0

0 if 𝛿 = 0 and ̂𝛿(𝐴→𝐵←𝐶) = 0

𝑡𝑠(𝐴→𝐵←𝐶) measures the strength of evidence which the cognacy overlaps
between the three languages provide against the v-structure pattern. Because all
triangle scores are on the same scale, but cover overlaps of different strengths,
we cannot directly add up these triangle scores to aggregate the directionality
information they encode into a global evidence score. To avoid strong influences
from languages with little overlap to the pair in question, it is necessary toweight
the contributions to the triangle score sum by their relevance to the link in ques-
tion. One simple way to define these weights is by considering the strength of
the connection of the third variable 𝐶 to either of the two variables involved,
and then normalizing these weights to keep the weighted sum in the [0, 1] range.
In practice, making the weight differences a little more pronounced helped to
moderate the contribution of distant third languages, leading me to square the
weights before normalization:

𝑤′(𝐴→𝐵; 𝐶) = max (𝑐(𝐵, 𝐶)𝑐(𝐵) , 𝑐(𝐴, 𝐶)𝑐(𝐴)) )
2
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The normalization of weights then happens in the obvious way:

𝑤(𝐴→𝐵; 𝐶) = 𝑤′(𝐴→𝐵; 𝐶)
∑𝐷∉{𝐴,𝐵} 𝑤′(𝐴→𝐵;𝐷)

Finally, the weighted sum of triangle scores over all third variables 𝐶 gives
us the definition of the Triangle Score Sum (TSS) after which the directionality
inference method is named:

𝑡𝑠𝑠(𝐴→𝐵) = ∑
𝐶∉{𝐴,𝐵}

𝑤(𝐴→𝐵; 𝐶) ⋅ 𝑡𝑠(𝐴→𝐵←𝐶)

The TSS can be calculated on each link for arrows in both directions, and the
results have the same scale, yielding a natural decision criterion in terms of the
evidence strength quotient:

𝑠𝑐(𝐴→𝐵) = 𝑡𝑠𝑠(𝐴→𝐵)
𝑡𝑠𝑠(𝐵→𝐴)

To understand better how TSS works, let us take a look at an example from
the Baltic Sea scenario. For the link betwen Russian and Kildin Saami (sjd), the
triangles with the heighest weight are given by Skolt Saami (sms), due to its high
overlap with Kildin Saami, as well as by Polish (pol) and Belarusian (bel), both
due to their high overlapwith Russian. Together, these three triangles account for
62.3% of the total weight sum,meaning that if a strong tendency arises from these
three triangles, it will not be inverted by the remaining low-overlap triangles.
Let us start with 𝑡𝑠(sjd → rus ← bel). If this were a true v-structure, we would
expect a three-way overlap of 34.55 cognates. In reality the overlap is higher at
47, giving a moderate counterevidence score of 𝑡𝑠(sjd → rus ← bel) = 0.265.
From the reverse perspective, we have a much better fit at 𝑡𝑠(rus → sjd ←
bel) = 0.068, because the prediction in this case would be an overlap of 50.42
cognates. The first triangle thus delivers a score contribution that is almost four
times higher for the arrow direction rus → sjd. The scores for the other two
triangles we consider point in the same direction: 𝑡𝑠(sjd → rus ← pol) = 0.362,
but 𝑡𝑠(rus → sjd ← pol) = 0.105, and 𝑡𝑠(sjd → rus ← sms) = 0.232 is much
higher than 𝑡𝑠(rus → sjd ← sms) = 0.073. From these three triangles, we can
begin to approximate 𝑡𝑠𝑠(rus → sjd) = 0.300⋅ 0.0680.265+0.165⋅

0.105
0.362+0.148⋅

0.073
0.232+⋯ ≈

0.2786. The actual value with the full triangle sum is 𝑡𝑠𝑠(rus → sjd) = 0.6658,
i.e. the missing triangles will equal the score out quite a bit, although the general
tendency for more evidence against sjd → rus (i.e. a signal against the wrong
directionality) remains.
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The challenge of the TSS approach is to decide on a threshold for turning the
evidence strength quotient 𝑠𝑐(𝐴 → 𝐵) on each link into a directionality deci-
sion 𝐴→𝐵. For instance, is 𝑠𝑐(𝐴→𝐵) = 0.667, i.e. 50% more evidence in this
direction than the other, enough to make the decision? Reusing the five scenar-
ios generated to derive the best 𝑢𝑓 𝑟 threshold, I extracted the 211 links that were
not part of the phylogenetic tree, of which 187 are monodirectional. For each link
𝐴→𝐵 I computed 𝑠𝑐(𝐴→𝐵). If 𝑠𝑐(𝐴→𝐵) < 1.0, evidence pointed in the right
direction, making this an instance where TSS worked correctly. Counterbalanc-
ing this are the cases where 𝑠𝑐(𝐴→𝐵) > 1.0, i.e. where the implied arrow was
inverted. Figure 6.1 shows the distribution of 𝑠𝑐(𝐴→𝐵) for the good instances,
and the inverse for bad instances. The separation is disappointingly bad, indicat-
ing that the possible advantage of a pairwise criterion like TSS over a triple-based
like UFR is much reduced by themore difficult classification task. Still, it is clearly
visible that the correct arrows tend to cluster closer to 0, and the inverted arrows
closer to 1. This gives me an empirical basis for deciding on a threshold value,
because I want as many good instances as possible below the threshold, while
keeping asmany bad instances as possible above it, because I prefer not assuming
an arrow at all to inferring wrong directionality of contact.
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Figure 6.2: TSS scores for correct and inverted arrows

This is another instance of a precision-recall tradeoff, where in addition to
the correct and inverted TSS scores, the bidirectional links filter in as additional
false instances in either direction. Aiming for a precision of 70%, we can only get a
recall of 21%with a threshold value of 0.424. On the other hand, if wewant to find
two thirds of all arrows (66% recall), we can only achieve that with a threshold of
0.982, i.e. we would have to add arrows very aggressively. A good compromise
needs to be found somewhere between these values. Precision remains about
constant at 64%, i.e. about two thirds of inferred arrows are correct, across a very
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large range of threshold values between 0.555 and 0.720, which is when it starts
to drop significantly. At the threshold value of 0.72, the maximum of this range,
recall is at 47%, which seems to be a reasonable compromise given the overall
low performance.

In these considerations, we have not considered how the performance of TSS
and UFR varies with the number of shared cognates defining each link, i.e. with
data sparseness. Unavoidably, the rather simple TSS method can easily be misled
by noisy or sparse data. My general impression is that TSS works considerably
better on the NorthEuraLex data than the test cases suggest, possibly because the
relevant contacts shaping real datasets tend to include large numbers of cognates.
The evaluation will shed more light on this question, showing that the intuition
is largely, but not always, correct.

6.6 The phylogenetic guide tree

As explained at the start of this chapter, in order to infer fully general evolu-
tionary networks via causal inference, I will need to infer data for the proto-
languages. To establish the proto-languages that need to be reconstructed, and
as a guiding datastructure for the reconstruction, I need some phylogenetic tree
over the attested languages as a starting point. A fully integrated system that
starts with word lists and returns a lexical flow network as a result, would there-
fore include at least a rudimentary component for phylogenetic tree inference.
As we have seen in §2.5.2, phylogenetic tree inference is already a very well-
established field, and any of the methods discussed by Felsenstein (2004) can in
principle be used for this purpose.

The purpose of my investigation is to compare the performance of different
network inference variants on the best possible guide tree, and not to provide
a fully integrated software package. My software implementation therefore re-
quires the user to specify cognate sets over the input data, and some phylogenetic
tree over the same languages, with branch lengths. This leaves it to the user to
plug in cognate detection or tree inference algorithms of their choice, making
it possible for my system to profit from future advances in these two subfields,
although basic methods for a one-pass processing from word lists to lexical flow
network will be provided as part of the release version of my software.

For my experiments on the simulated data from Chapter 5, I will simply use
the binary tree created by the simulated language split events, together with the
branch lengths defined by the times at which these events occurred. This tree is
then reduced to the languages which still lived at the end of the simulation, first
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removing all the branches leading only to extinct languages, and then removing
non-branching nodes in the resulting tree while maintaining consistent branch
lengths.

For the NorthEuraLex data, I will use the expert tree defined by Glottolog,
again reduced to only those leaves which are attested in the database. Adding
branch lengths to this non-binary tree is one of only two places where I found it
necessary to use existing phylogenetic inference tools. According to a suggestion
by Gerhard Jäger, the inferred cognates were encoded as binary features and
given to the IQ-Tree software (Nguyen et al. 2015) as input for inferring branch
lengths on the unrooted Glottolog tree. For the output, the tree was re-rooted
with Mandarin Chinese (cmn) as an outlier. None of the family-internal branch
lengths inferred by the selected model GTR2+FO+ASC+G4 seemed unplausible
on inspection (see Appendix B.2 for a visualization), so that the resulting tree
seems adequate as input for reconstruction methods.

6.7 Deriving proto-language models

If I want to be able to treat proto-languages as observed variables in the causal
inference paradigm, I need to put some effort into deriving at least a good hypoth-
esis about the presence or absence of each cognate class at each ancestral node in
our phylogenetic tree. The idea essential to reconstruction then is to assume that
the proto-language of some group of observable languages is most likely to have
contained those cognate sets which are present in a large (and diverse) subset of
its descendant languages.

This is very similar to the reconstruction of ancestral genomes in bioinformat-
ics, fromwhere we can take a variety of readily applicable algorithms. In addition
to the mainstream ASR (Ancestral State Reconstruction) techniques in this tra-
dition, I also present a naive threshold-based approach that will be used as a
baseline. After evaluating the different methods on the simulated data, only the
best two methods will be used to arrive at a usable reconstruction of ancestral
cognacy in the NorthEuraLex dataset, and this reconstruction will be treated just
like actual observations for phylogenetic network inference.

6.7.1 Ancestral state reconstruction algorithms

From the large number of ASR methods discussed in the literature, I will only
sample a few very common and robust variants that are trivial to extend from
nucleotides to cognacy data. The treatment of the methods cannot be complete,
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and I neither have the space to give examples of each reconstruction algorithm
here, nor to provide the full algorithmic details for each method. Still, my expla-
nations should suffice to provide the reader with correct intuitions about each
method, and the formal statements are precise enough to completely describe
the core features of any implementation.

6.7.1.1 Naive threshold-based approaches

For the initial experiment, I opted for a simple recursive criterion. For each node
in the expert tree, it includes those cognate sets that are present in a majority
(more than 50%) of its immediate daughter languages. This implies we start at
the observable languages and their cognate sets, and reconstruct upwards in the
expert tree, arriving at the root language(s) in a single bottom-up pass through
the entire tree.

If we introduce the notation 𝑃(𝑙 = 𝐴) for the probability of cognate class 𝐴
being reconstructed for some concept in the language 𝑙 with children 𝑙1, … , 𝑙𝑘 ,
the majority-based reconstruction can be written as a recursive formula

𝑃(𝑙 = 𝐴) ∶=
⎧
⎨
⎩

1 if
1
𝑘 ∑

𝑘
𝑖=1 𝑃(𝑙𝑖 = 𝐴) > 0.5

1 if 𝑘 = 0 and the word for the concept was assigned to class 𝐴
0 else

This simple definition directly implements an important property of any useful
reconstruction, namely that a word which was borrowed once at an intermediate
stage and therefore now turns up in every language of a branch with many lan-
guages, will not end up in the proto-language if there is no other branch which
also features a cognate. This usage of the tree to channel the information is su-
perior to an even more naive criterion that would simply count the occurrences
of each cognate class at the leaves under each ancestral node.

The main problem of this approach is of course that it tends to err very much
on the safe side, as reconstruction stops as soon as there is a configuration of two
subgroups for which different ancestral states are reconstructed, which occurs
very often in real data. On the other hand, the few reconstructions this method
arrives at tend to be extremely reliable. A threshold lower than 0.5 could be intro-
duced for nodes which are more than binary-branching, but this would quickly
lead to far too generous reconstruction.
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In sum, threshold-based approaches can only be expected to show a very low
performance, and do not offer many options to fine-tune them to the specific
task. I will still use the majority-based approach as a baseline for comparison
with more advanced alternatives.

6.7.1.2 Parsimony-based approaches

The most direct modern approach to ASR is based on maximizing parsimony,
which can be seen as a formalization of Occam’s razor, i.e. the principle of select-
ing the simplest hypothesis which explains all the data. In the context of ASR,
parsimony can simply be described by the number of state changes which the
model needs to assume. If we reconstruct the ancestral states in such a way that
the number of mutations the model needs to assume is minimized, we are maxi-
mizing the parsimony of our reconstruction.

The standard algorithm formaximumparsimony is the Sankoff algorithm, orig-
inally defined by Sankoff (1972), which uses dynamic programming to keep track
of the minimal number of replacement operations which needs to be assumed
for smaller subproblems, and fills a table for each node, storing the total num-
ber of replacement operations which each state at that node would imply. For
the current optimal solution in each cell, backpointers are stored which make
it possible to reconstruct the configuration of ancestral states which led to the
minimum number of replacement events for the entire problem. In my applica-
tion, there are two useful variants of this basic Sankoff algorithm, which differ
in whether we consider the presence of each cognate set as an independent char-
acter, or treat the different cognate sets for one concept as the different values
of a single multistate character.

In the first version, which I will call multi-value MP reconstruction, a separate
run of this basic Sankoff algorithm is performed for each presence-absence char-
acter, meaning that the table for each node only has two cells (one for presence,
one for absence). Formally, each cognate set 𝐴 is reconstructed for the subset
𝐿𝐴 ⊆ 𝐿 of all languages for which ∑(𝑙𝑖 ,𝑙𝑗)∈𝐸 1𝑙𝑖∈𝐿𝐴,𝑙𝑗∉𝐿𝐴 is minimal, under the con-
dition that 𝑙 ∈ 𝐿𝐴 holds for every language 𝑙 where the cognate set 𝐴 is attested,
and 𝑙 ∉ 𝐿𝐴 for every language 𝑙 where it is not. In this version, it is possible that
absence is reconstructed for all cognate sets, leaving a node without reconstruc-
tion, or that presence is reconstructed for more than one cognate set at a given
node, hence the name I am using.

The second version, which I will call single-value MP reconstruction, recon-
structs exactly one cognate set from the set of ancestral nodes, out of a set of
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candidates defined by the cognate sets occurring in the attested languages as-
signed to that phylogenetic unit. The Sankoff table has as many cells as there are
candidate cognate sets. Formally, given a cost function 𝑐(𝐴, 𝐵) for the replace-
ment of cognate sets (typically, 𝑐(𝐴, 𝐴) ∶= 0 and 𝑐(𝐴, 𝐵) ∶= 1 for 𝐴 ≠ 𝐵), this
variant assigns a tuple of cognate sets (𝐴1, … , 𝐴𝑛) to all the nodes (𝑙1, … , 𝑙𝑛) such
that that ∑(𝑙𝑖 ,𝑙𝑗)∈𝐸 𝑐(𝐴𝑖 , 𝐴𝑗) is minimal, while keeping one set 𝐴𝑗 of the cognate
sets assigned to each attested language 𝑙𝑗 fixed.

The main problem of parsimony-based ASR is that different branch lengths
cannot be accounted for. This exploits existing knowledge only suboptimally,
since if one of two languages forming some phylogenetic unit is known to be
more conservative (which would be reflected by a shorter branch length or a
lower replacement rate in phylogenetic tree models), this will make it more likely
that the ancestral set survived in this language, making it more informative for
the reconstruction. A related more general problem of MP is that there will often
be a large number of maximally parsimonious reconstructions, i.e. parsimony
alone does not give us a sufficient decision criterion for finding a single recon-
struction.

6.7.1.3 Fully probabilistic approaches

More recent approaches to ASRwork in the maximum-likelihood (ML) paradigm.
These fully probabilistic methods treat the discrete states 𝑦 at internal nodes as
unknown parameters whose values need to be estimated given the data 𝑥 we
observe. An obvious choice is the maximum likelihood estimator, which maxi-
mizes 𝑃(𝑦|𝑥), the probability of different parameter values given the observed
data, with the help of Bayes’ rule:

𝑃(𝑦|𝑥) = 𝑃(𝑥|𝑦)𝑃(𝑦)
∑𝑦 𝑃(𝑦)𝑃(𝑥|𝑦)

While the denominator is hard to compute, it is independent of 𝑦 and is there-
fore irrelevant for maximizing the expression. Maximum likelihood estimation
assumes that no prior information about plausible values 𝑃(𝑦) is available, which
reduces the task of maximizing 𝑃(𝑦|𝑥) to maximizing the likelihood 𝑃(𝑥|𝑦) that
we see the data given parameter values 𝑦. A good ML estimator will typically
converge to the most likely value of 𝑦, although it is possible that other val-
ues of 𝑦 are almost as likely, and that the ML estimate �̂� is even an outlier in
the space of plausible parameter values. Still, ML estimates of model parameters
provably maximize the agreement of the model with the data in many types of in-
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ference problems, given ML estimation a strong independent motivation outside
the Bayesian paradigm.

In the application to ASR, optimization is based on an explicit parameterized
evolutionary model 𝑃𝑖𝑗(𝜃) which fully describes how each state 𝑖 is likely to
evolve along a given phylogenetic tree, and thereby assigns a probability 𝑃(𝑥|𝑦, 𝜃)
to the observed data for each set of parameter values. If the evolutionary model
is Markovian (the probability of each state change only depends on the parent
state, not on earlier states), dynamic programming can be used to efficiently de-
rive the internal states 𝑦 which maximize 𝑃(𝑥|𝑦, 𝜃). For different applications,
different evolutionary models are plugged into this basic paradigm.

Apart from the different evolutionary models, the main dividing line between
approaches to ML-based ASR is in the method the optimal ancestral states at
internal nodes are calculated. In the computationally simpler marginal recon-
struction as introduced by Yang et al. (1995), reconstruction of states at an in-
ternal node 𝐴 is done by re-rooting the tree such that 𝐴 becomes the root, and
then computing the likelihoods for the different states at each node in a bottom-
up fashion, summing over all possible combinations of states in the children
𝑐ℎ(𝐴) = {𝐵1, … , 𝐵𝑛} down to the leaf nodes:

�̂�𝐴 ∶= argmax𝑖 𝐿𝐴(𝑖), 𝐿𝐴(𝑖) ∶= ∑
𝑗1,…,𝑗𝑛

𝑛
∏
𝑘=1

𝑃𝑖𝑗𝑘𝐿𝐵𝑘 (𝑗𝑘)

These values can again be computed by dynamic programming, meaning that
the computation is only more time-consuming than the Sankoff algorithm by a
factor linear in the number of ancestral nodes.

By contrast, in the more complex joint reconstruction, the likelihood is jointly
maximized over reconstructed values at all nodes, which is computationally a lot
more demanding. Moreover, according to Yang et al. (1995), this variant is less
suitable for retrieving optimal reconstructions at each ancestral node (because
suboptimal local solutions can be necessary for an optimal global reconstruction),
which leads me to disregard it as an option for the current application.

Implementing marginal reconstruction from stretch is non-trivial, and the im-
plementation details of existing systems are not fully specified in the literature.
This makes ML reconstruction the second of the two places in my infrastructure
where it seemedmore prudent to rely on third-party software instead of engineer-
ing my own implementation to behave exactly like a reference implementation.
For marginal ML reconstruction, I am using a somewhat brittle interface from
my Java code into the R package phangorn via system calls to Rscript, and a
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custom method on the R side for output in a Nexus format which can be read
back into Java and mapped onto the original character information.

In analogy to multi-value MP reconstruction, multi-value ML reconstruction
operates on binary characters which encode the presence or absence of each
cognate set at each node. For non-attested nodes, the marginal reconstruction
assigns probability values to each of the two values 0 (absence) and 1 (presence)
of each character. If the probability of 1 at an ancestral node is above 50%, the cor-
responding cognate set is reconstructed for the respective proto-language. This
variant shares its basic properties with multi-value MP reconstruction. Ancestral
nodes can remain without any reconstructed cognate set if for each cognate set
character, the probability of the value 1 was below 50%.

For single-value ML reconstruction, we only use one multi-state character for
each concept, where each state encodes one of the possible cognate sets. The
marginal reconstruction then produces a probability distribution over all the pos-
sible cognate sets at each ancestral node, and we only reconstruct the one with
the highest probability. The behavior of the resulting method is again similar
to single-value MP reconstruction in that exactly one cognate set will be recon-
structed for each ancestral node. Due to limits in the phangorn implementation
which are well-justified for its main field of application in biology, there is no
support for ambiguity in the input data. This prevented me from modeling the
synonyms in the NorthEuraLex data, so that the single-value ML reconstruction
only builds on the first form in each list of concept realizations.

Maximum-likelihoodmethods for ASRwork on a single phylogenetic treewith
branch lengths, which is typically inferred by a different (often Bayesian) method.
This can lead to problems because the likelihood of the individual tree hypothesis
that the reconstruction is based on is usually quite low, and a reconstruction
which takes more than a point estimate of plausible trees into account will be
much more sound if computationally feasible.

To account for the uncertainty in the tree reconstruction, Bayesian methods
which account for the uncertainty in both the ancestral characters and the tree
structure have been developed. The hierarchical Bayes method by Huelsenbeck
& Bollback (2001) is able to model uncertainty in the tree, branch lenghts, and
the substitution model at the same time, but is reported to lead to very high un-
certainty in the results. The advantages of this more accurate quantification of
uncertainty are unclear in an application where only a single optimal reconstruc-
tion can be used. This and the prohibitive computational complexity associated
with fully Bayesian methods justify confining myself to the simpler maximum-
likelihood paradigm.
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6.7.2 Evaluation of ASR algorithms on simulated data

It is easy to evaluate the different ASR methods on the simulated data. Let us
act as if we lost the true configurations of all dead languages in the simulated
set, and are left with a reduced version of the true tree which only contains the
living leaves, plus the internal nodes which are necessary to keep the branching
structure over these leaves. We can then feed the reduced true tree and the data
from the leaves into the different reconstruction algorithms.

To compare the results, we return to the true data we discarded, and compute
the percentage of bits (representing presence or absence of each cognate class) at
the reconstructed nodes that correspond to the true values, as well as precision
and recall on the level of reconstructed classes. Finally, we analyse the difference
in reconstruction quality for proto-languages of different age, to find out whether
one of the algorithms is more robust at higher time depths.

The following five previously introduced ASR methods were compared in this
way:

1. Mjrty (majority-based), i.e. using the naive criterion of reconstruction or
presence in the majority of children

2. MPsgl (single-value MP), i.e. using the Sankoff algorithm to reconstruct
exactly one correlate set for each concept at each node

3. MPmlt (multi-value MP), i.e. using the Sankoff algorithm to reconstruct a
binary presence/absence value for each correlate set and concept

4. MLsgl (single-valueML), i.e. using amarginal estimator onmultistate char-
acters, and selecting the most likely cognate set for each ancestral node

5. MLmlt (multi-value ML), i.e. using a marginal estimator on binary pres-
ence/absence values, reconstructing the correlate set if presence is more
likely than absence

Running the different reconstruction algorithms and comparing the results
on our 50 simulated linguistic histories, we get the numbers in Table 6.1. The
overall picture is clearly in favor of the MP and ML methods, but the differences
between the two are not very pronounced. Only for the single-value variants,
there is a clear advantage for ML over MP. For both MP and ML, the single-value
variants shows higher recall than the multi-value variants, because they always
produce some reconstruction even if evidence is not very strong, but this comes
at a significant cost to precision. The very conservative majority method has the
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highest precision, but achieves this at amuch higher cost to recall than theMLmlt
method almost equalling it in precision. Overall, MLsgl is clearly the best method,
as it achieves the highest recall by a significant margin, without compromising
too much on precision.

Table 6.1: Performance of different ASR algorithms on simulated data

# Mjrty MPsgl MPmlt MLsgl MLmlt
Accuracy 0.9804 0.9774 0.9830 0.9803 0.9829
Precision 0.8463 0.5720 0.8199 0.6292 0.8255
Recall 0.3212 0.5874 0.4586 0.6289 0.4386
F-score 0.4656 0.5796 0.5882 0.6291 0.5813

In order to check the suspicion that the differences between the algorithms
might become more pronounced at higher time depths, where the few really dif-
ficult reconstructions are, we can evaluate the performance separately on proto-
languages of different ages. Figure 6.3 visualizes the performance of the five re-
construction methods across twenty different age ranges.

Whereas F-scores are satisfactory for reconstructed languages that go back
only a few hundred simulated years, already at a time depth of 1,000 years sub-
stantial differences in the performance of the different algorithms start to appear.
At higher time depths, recall becomes so low that the F-scores are already surpris-
ingly close to zero. Still, there are some interesting developments at this highly
problematic range. At a time depth of 5,000 years there is a clear split between
three methods which essentially do not reconstruct anything useful any more
(the majority method and the multi-state methods, all with recall under 10%),
and the other three methods which still manage to reconstruct at least some
cognate sets (recall of 20-30%), albeit with a high error rate (less than 40% of
the reconstructed cognate sets are correct). We can conclude that the acceptable
overall performance of all methods in the previous analysis was mainly due to
the dominance of simple reconstruction tasks if we evaluate across entire trees
with many more younger languages than old ones. The task of reconstruction at
higher time depths is still very much an unsolved problem. At these higher time
depths, the twomulti-state methods perform better precisely because they are bi-
ased towards assuming some reconstruction even if not enough evidence is avail-
able. However, since the overall advantage of the maximum-likelihood methods
remains stable for proto-languages of any age, we at least know that they are
clearly our best methods for phylogenetic flow inference, and will therefore be
the default reconstructions used for the further experiments. The superiority of

221



6 Phylogenetic lexical flow inference

Figure 6.3: Development of ASR performancewith age of reconstructed
language
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ML reconstruction over MP reconstruction was recently confirmed by Jäger &
List (2017) on a different test set comprising real data from Indo-European, Aus-
tronesian, and Sinitic languages. In contrast to my simulated data, the perfor-
mance of the methods is only evaluated against reconstructions at the level of
the respective proto-language, i.e. at a high time depth. Just as in my experiment,
the ML-single variant (ML-multi in their terminology) wins by a large margin.

6.8 Phylogenetic Lexical Flow Inference (PLFI)

Given a tree skeleton predetermined either by previous knowledge or inferred
by means of a phylogenetic method, we can now apply ASR methods to derive
cognate sets for the tree’s internal nodes, and proceed to apply causal inference
to the resulting dataset. Of course, thismeans that the performance of themethod
will hinge very much upon the quality of the reconstruction.

Very optimistically assuming that the output of our ASRmethod approximates
the true history very closely, we treat all the nodes in our phylogenetic tree as
observable languages, and apply lexical flow inference to a mixture of attested
languages and reconstructed proto-languages. This is the algorithm which I pro-
pose to call Phylogenetic Lexical Flow Inference (PLFI). Algorithm 2 gives a de-
scription of all PLFI variants in pseudocode.

The PLFI algorithm requires either an expert tree, or a tree inferred by some
phylogenetic tree inference algorithm, as input in addition to the cognacy data.
After a preprocessing stage where the tree is reduced to the leaves for which data
are available, some ancestral state reconstruction method (MLsgl by default) is
applied to the tree and the data at the leaves in order to infer the presence or
absence of each cognacy class at every non-leaf node in the reduced tree. The
causal graph is then built over all the tree nodes.

The PC algorithm starts out with the fully connected graph, i.e. a network in
which every pair of nodes is connected by a link. This graph is progressively
thinned out to yield the skeleton by means of conditional independence tests
based on separating set candidates. In each iteration, the algorithm increases the
size 𝑠 of separating sets it considers. At each stage, it iterates through all the
links remaining in the graph, and tries to build a separating set of size 𝑠 from the
neighbors of the two languages it tries to separate.

Unlike in the vanilla PC algorithm, there is a defined order in which the links
are tested for deletability. The PLFI algorithm always starts with the weakest
remaining link, on the grounds that such links are more likely to arise due to
random fluctuation in the noisy cognacy judgments. The links which represent
the highest overlap are always checked last.
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Algorithm 2 PLFI(𝐿1, … , 𝐿𝑛)
1: ASR method 𝑎𝑠𝑟𝑀 ∈ {𝑀𝑗𝑟𝑡𝑦,𝑀𝑃𝑠𝑔𝑙, 𝑀𝑃𝑚𝑙𝑡, 𝑀𝐿𝑠𝑔𝑙, 𝑀𝐿𝑚𝑙𝑡}
2: skeleton inference method 𝑠𝑘𝑙𝑀 ∈ {𝑃𝐶, 𝑃𝑆, 𝐹𝑆}
3: directionality inference method 𝑑𝑖𝑟𝑀 ∈ {𝑉𝑃𝐶, 𝑆𝑃𝐶, 𝑈 𝐹𝑅, 𝑇𝑆𝑆}
4: 𝑇 ∶= 𝑝ℎ𝑦𝑙𝑜𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒({𝐿1, … , 𝐿𝑛}), or an expert tree
5: 𝑇 ∶= 𝑟𝑒𝑑𝑢𝑐𝑒(𝑇 , {𝐿1, … , 𝐿𝑛}), the phylogenetic tree reduced to attested leaves
6: 𝑇 ∶= 𝑎𝑠𝑟(𝑇 , 𝑎𝑠𝑟𝑀), add cognate classes to ancestral nodes by reconstruction
7: ℒ ∶= 𝑛𝑜𝑑𝑒𝑠(𝑇 )
8: 𝐺 ∶= (ℒ, 𝐸) ∶= (ℒ, {{𝐿𝑖 , 𝐿𝑗 } | 𝐿𝑖 , 𝐿𝑗 ∈ ℒ ′}), the complete graph
9: 𝑆 ∶ ℒ ×ℒ → ℘(ℒ), the separating set storage
10: 𝑠 ∶= 0
11: while 𝑠 < |ℒ | − 2 do
12: for {𝐿𝑖 , 𝐿𝑗 } ∈ 𝐺 by increasing strength of remaining flow do
13: if 𝑠𝑘𝑙𝑀 ∈ {𝑃𝐶, 𝑃𝑆} then
14: for each subset 𝑆 ∈ ℘(𝑁 ) for neighbors 𝑁 of 𝐿𝑖 or 𝐿𝑗 do
15: if 𝑠𝑘𝑙𝑀 = 𝑃𝐶 or all elements of 𝑁 are on paths from 𝐿𝑖 to 𝐿𝑗 then
16: if |𝑆| = 𝑠 and 𝐼 (𝐿𝑖 ; 𝐿𝑗 |𝑆) < 0.025 then
17: remove {𝐿𝑖 , 𝐿𝑗 } from 𝐺, 𝑆(𝐿𝑖 , 𝐿𝑗) ∶= 𝑆(𝐿𝑖 , 𝐿𝑗) ∪ {𝑆}
18: end if
19: end if
20: end for
21: else if 𝑠𝑘𝑙𝑀 = 𝐹𝑆 then
22: for each combination 𝑃1, ..., 𝑃𝑘 of paths from 𝐿𝑖 to 𝐿𝑗 of length ≤ 4 do
23: if |𝑆| = 𝑠 for 𝑆 ∶= ⋃{𝑃1, … , 𝑃𝑘} then
24: if ratio of 𝑐(𝐿𝑖 , 𝐿𝑗) not explainable by flow across 𝑆 is < 0.025 then
25: remove {𝐿𝑖 , 𝐿𝑗 } from 𝐺, 𝑆(𝐿𝑖 , 𝐿𝑗) ∶= 𝑆(𝐿𝑖 , 𝐿𝑗) ∪ {𝑆}
26: end if
27: end if
28: end for
29: end if
30: end for
31: 𝑠 ∶= 𝑠 + 1
32: end while
33: if 𝑑𝑖𝑟𝑀 = 𝑇𝑆𝑆 then
34: for {𝐿𝑖 , 𝐿𝑗 } ∈ 𝐺 do
35: if 𝑠𝑐(𝐿𝑖 →𝐿𝑗) < 0.72 then
36: add arrow 𝐿𝑖 → 𝐿𝑗 to network
37: end if
38: end for
39: else
40: for 𝐿𝑖 , 𝐿𝑗 , 𝐿𝑘 ∈ ℒ where {𝐿𝑖 , 𝐿𝑗 }, {𝐿𝑗 , 𝐿𝑘} ∈ 𝐸 but {𝐿𝑖 , 𝐿𝑘} ∉ 𝐸 do
41: if (𝐿𝑖 → 𝐿𝑗 ← 𝐿𝑘) is a v-structure according to 𝑑𝑖𝑟𝑀 and 𝑆(𝐿𝑖 , 𝐿𝑘) then
42: add arrows 𝐿𝑖 → 𝐿𝑗 and 𝐿𝑘 → 𝐿𝑗 to network
43: end if
44: end for
45: propagate arrows according to rules ℛ1 to ℛ3
46: end if
47: return network consisting of 𝐺 and arrows
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The separating set candidates which are tried out for the conditional indepen-
dence tests depend on the skeleton inference method. If the skeleton inference
method is set to 𝐹𝑆, the flow-separation criterion introduced in §6.4 is applied,
so that every separating set candidate is composed of paths connecting the two
languages in the current skeleton. Using one of the other skeleton inferencemeth-
ods, this first stage of the algorithm can also be configured to behave just like the
vanilla PC algorithm or like PC*.

For the directionality inference stage, the user has the choice between four
variants. The vanilla PC variant only differs from stable PC and the UFR crite-
rion in the way in which v-structures are detected. In all three cases, the three
standard directionality propagation rules of the PC algorithm are applied until
all links are directed or none of the rules applies any longer. The only direction-
ality inference method which works differently is the TSS-based variant, which
infers the directionality on each arc separately by checking the TSS ratio against
the threshold determined in §6.5.

6.9 Evaluation of PLFI

There are two main ways to evaluate phylogenetic lexical flow inference which
promise to be of interest. First, we can evaluate on perfect proto-data to deter-
mine the theoretical maximum performance the method could achieve if we had
access to a perfect reconstruction. This gives us an upper bound on performance,
because any real reconstruction will deviate from this perfect picture. To gener-
ate the input data for PLFI, we simply take the final state of the simulation for
all languages, whether living or dead. This implies we include data from entire
unattested lineages, including what we have earlier called para-languages and
substrates, so that in this scenario, we have actual causal sufficiency, and the PC
algorithm should be applicable without restrictions.

Themore realistic evaluation of themethod builds on reconstructed proto-data.
Here, we reduce the known tree to ancestors of living languages, leaving only the
lowest common ancestor in the cases were internal nodes become unary because
one of two branches is deleted. Then, we apply one of the ASR algorithms to
produce the data for the internal nodes of the reduced tree. To limit the number of
cases to consider, we only evaluate on the twoML reconstructionmethods which
performed best on the simulated data, in order to be certain that our findings on
simulated data carry over to the NorthEuraLex dataset.
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6 Phylogenetic lexical flow inference

6.9.1 Evaluation metrics for phylogenetic flow

Since causal inference as we employ it consists of the two stages of skeleton in-
ference and directionality detection, for both of which we have multiple options
at our disposal, it makes sense to first evaluate performance at the skeleton in-
ference task, and then evaluate the different methods for directionality detection
on the results of the best skeleton inference method.

For each connection 𝐿1 — 𝐿2 which was found by the phylogenetic flow algo-
rithm in the reconstructed network 𝐺𝑟𝑒𝑠 , we can ask whether it corresponds to
a lateral connection 𝐿1 — 𝐿2 in 𝐺𝑡𝑟𝑢𝑒 . If this is the case, we call the inferred con-
nection a true positive (𝑡𝑝), otherwise a false positive (𝑓 𝑝). If a lateral connection
in 𝐺𝑡𝑟𝑢𝑒 does not have an equivalent in 𝐺, we count it as a false negative (𝑓 𝑛).
If for a pair of languages 𝐿1 and 𝐿2, neither graph has a connection 𝐿1 — 𝐿2, we
count it as a true negative (𝑡𝑛). From these four numbers 𝑡𝑝, 𝑓 𝑝, 𝑓 𝑛, and 𝑡𝑛, we
can compute precision and recall, the standard measures of performance on bi-
nary classification tasks.The skeleton recall (SkRc) is then defined as

𝑡𝑝
𝑡𝑝+𝑓 𝑛 , i.e the

ratio of links in the true skeleton which the algorithm managed to reconstruct.
Analogously, the skeleton precision (SkPr) can be written as

𝑡𝑝
𝑡𝑝+𝑓 𝑝 , i.e. the ratio

of links in the reconstructed skeleton which are correct. Both measures can be
combined in a standard way via 2 ⋅ 𝑆𝑘𝑃𝑟⋅𝑆𝑘𝑅𝑐𝑆𝑘𝑃𝑟+𝑆𝑘𝑅𝑐 to the skeleton F-score (SkFs), a com-
bined performance measure which reaches high values if precision and recall are
well-balanced.

For the evaluation on perfect proto-data, it is easy to adapt these standard per-
formancemeasures, because there are no complications due to gaps in our knowl-
edge which ASR cannot close. When evaluating on reconstructed proto-data, the
situation is a littlemore complicated because some of the true connections cannot
conceivably be found in the absence of substrates, and even in a perfect result,
only the links between ancestors of related languages will be represented. For
simulated contacts between pairs of languages where either only the donor or
recipient of lexical material is in the input data (again, cases like substrate lan-
guages), we need to define which structures in the result graph would count as
correctly reflecting reality, and which structures we would not accept as equiv-
alent to the true story. In terms of precision, we will accept a link where either
the reconstructed donor or the reconstructed recipient is the lowest ancestor of
the true donor or recipient in the reduced tree, but not if both donor and recip-
ient are wrongly detected, or contact is inferred between descendants. For each
connection 𝐿1 — 𝐿2 in the inferred network 𝐺𝑟𝑒𝑠 , we therefore ask whether it is
compatible with some connection in 𝐺𝑡𝑟𝑢𝑒 , in the sense that it reflects a lateral
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connection 𝐴1 —𝐴2 for two languages 𝐴1 ∈ 𝑎𝑛𝑐(𝐿1) and 𝐴2 ∈ 𝑎𝑛𝑐(𝐿2) in 𝐺𝑡𝑟𝑢𝑒 .
For example, if a link isl → eng is found, we would accept it on the grounds of
NorthGermanic → eng.

While the definition of true positives and false positives remain rather straight-
forward in this way, the definition of false negatives becomes a bit more involved.
Is NorthGermanic → eng captured by the inferred skeleton if it features a con-
nection from any North Germanic language to English? Or should we require
that all North Germanic languages should be connected to English by a lateral
connection? Recall that the last option would require separate exclusive lexical
flows of detectable size from every single NorthGermanic languages into English,
which will typically not be possible. For this reason, I choose to relax the condi-
tion and only require the weaker representation. More formally, a link 𝐿1 — 𝐿2 in
𝐺𝑡𝑟𝑢𝑒 which is not present in 𝐺𝑟𝑒𝑠 does not count as a false negative if there are
descendants 𝐷1 ∈ 𝑑𝑒𝑠(𝐿1) and 𝐷2 ∈ 𝑑𝑒𝑠(𝐿2) in the phylogenetic tree such that
𝐷1 —𝐷2 in 𝐺𝑟𝑒𝑠 .

With the skeleton in place, we can proceed to measure the quality of direction-
ality inference on the links.The idea is to consider all correct links in the skeleton
for which a directionality can be derived from the gold standard, and then anal-
yse for which of these links the correct orientation was inferred.The fact that we
actually have three possibilities for the gold standard (→ , ◦→ , and ↔ ), rela-
tive to which we have three possibilities for the result (→ , ← , — ), makes it a
little less natural to define positives and negatives than for the skeletonmeasures.
However, if we decide to count an arrow which points in the wrong direction as
a false positive, and take the equivalence of — and ↔ as well as the compatibil-
ity of ◦→ in the gold standard with both → and — in the result into account,
we arrive at a plausible solution, which is defined by Table 6.2.

Table 6.2: Table of elementary definitions for arrow evaluation

→ in result ← in result — in result
→ in standard true positive + false positive + false negative

true negative false negative
◦→ in standard true positive false positive true negative
↔ in standard false negative false negative true negative

Based on these elementary definitions, we can again define precision and recall
measures in the standard way. Informally, the arrow recall (ArRc) then measures
how many of the arrows in the gold standard on links in the derived skeleton
also occur in the inferred network with the correct directionality. To comple-
ment this measure, arrow precision (ArPr) quantifies how many of the arrows
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6 Phylogenetic lexical flow inference

in the reconstruction are justified by the gold standard. The trade-off between
these two measures is of the same nature which one would typically capture in
the precision-recall paradigm. If a directionality inference algorithm aggressively
infers arrows even in the face of conflicting or weak evidence, this will increase
arrow recall at the expense of arrow precision. A very cautious directionality in-
ference scheme which assumes bidirectionality by default, will lead to a higher
arrow precision at the cost of arrow recall. To handle this trade-off, we again mix

both measures into the arrow F-score (ArFs) defined as 2 ⋅ 𝐴𝑟𝑃𝑟⋅𝐴𝑟𝑅𝑐
𝐴𝑟𝑃𝑟+𝐴𝑟𝑅𝑐 , which will

be our primary measure for comparing the performance of the different variants.

6.9.2 Overall quantitative results for NorthEuraLex data

Our first step for the evaluation is to compare the different methods in terms of
skeleton precision and recall as well as arrow precision and recall on the entire
NorthEuraLex dataset. This will allow us to choose the best method for the case
studies in the next section.

Table 6.3 compares the skeleton precision and recall obtainable by the dif-
ferent conditional independence checks on our two maximum-likelihood recon-
structions. While the single-value ML reconstruction led to the highest overall
F-scores in the reconstruction experiments on simulated data, we find that the
multi-value reconstruction consistently leads to better performance in all mea-
sures, especially in recall.These are the consequences of using the reconstruction
with the highest precision, as this reconstruction will introduce the least noise,
letting the patterns appear more clearly. The noise introduced by single-value
reconstruction is so strong that it not only decreases the precision (leading to
spurious lateral connections), but also the recall (letting weaker conditions dis-
appear into the noise).

Table 6.3: Comparing skeleton performance of MLsgl and MLmlt re-
constructions on the NorthEuraLex data

MLsgl reconstruction MLmlt reconstruction
PC PS FS PC PS FS

skPrc 0.970 0.907 0.856 0.965 0.914 0.859
skRec 0.265 0.376 0.431 0.404 0.502 0.557
skFsc 0.416 0.532 0.574 0.570 0.648 0.676

The arrow performance measures are only defined for the intersection of links
in the inferred skeleton and the gold standard, which will be a smaller or a larger
set depending on the skeleton performance. Therefore, arrow performance can-
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not be reliably compared across reconstructions and skeleton inference variants.
Still, we can compare the performance of the four directionality inference meth-
ods on the best skeleton. This is done in Table 6.4. As the results show, the two
standard directionality inference methods used in the causal inference literature
do not work at all, due to the non-exact conditional independence tests and the
resulting difficulty to detect v-structures based on separating sets. On the multi-
value reconstruction, the stable PC variant does not evenmanage to infer a single
correct arrow. The two directionality inference methods introduced in this chap-
ter fare a lot better, but there is an interesting contrast in their behavior on the
different reconstructions. The single-value reconstruction gives an advantage to
UFR, whereas TSS is clearly superior on the multi-value reconstruction.

Table 6.4: Comparing arrow performance of MLsgl and MLmlt recon-
structions on the NorthEuraLex data

FS on MLsgl reconstruction
VPC SPC UFR TSS

arPrc 0.185 0.154 0.615 0.546
arRec 0.114 0.050 0.585 0.585
arFsc 0.141 0.076 0.600 0.565

FS on MLmlt reconstruction
VPC SPC UFR TSS

arPrc 0.240 0.000 0.410 0.500
arRec 0.122 0.000 0.695 0.689
arFsc 0.162 (0.0) 0.516 0.579

Finally, to rank the different variants for overall performance, we can multiply
the skeleton and arrow F-scores, capturing the intuition that the best approach
should result in both a good skeleton and correct directionality information. The
resulting numbers are given in Table 6.5, motivating our use of the MLmlt-FS-
UFR variant for the case studies. Depending on the application, a different vari-
ant which is tuned towards more reliability at the expense of only finding the
most prominent patterns, might be preferable. For applications where the focus
is on precision (e.g. if computational means for deciding a research question are
needed), the numbers on NorthEuraLex suggest that the MLsgl-FS-TSS variant
might be the best option.
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Table 6.5: PLFI variants ranked by combined F-score on the
NorthEuraLex data

PLFI Variant skFsc arFsc skFsc ∗ arFsc
MLmlt-FS-UFR 0.6759 0.5793 0.3916
MLmlt-PS-UFR 0.6477 0.5405 0.3501
MLmlt-FS-TSS 0.6759 0.5157 0.3486
MLsgl-FS-TSS 0.5736 0.6000 0.3442
MLsgl-FS-UFR 0.5736 0.5647 0.3239
MLmlt-PS-TSS 0.6477 0.4737 0.3068
MLsgl-PS-UFR 0.5315 0.5455 0.2899
MLsgl-PS-TSS 0.5315 0.5075 0.2697
MLmlt-PC-UFR 0.5699 0.4333 0.2470
MLmlt-PC-TSS 0.5699 0.3175 0.1809
MLsgl-PC-UFR 0.4156 0.4242 0.1763
MLmlt-PS-VPC 0.6477 0.2069 0.1340
MLmlt-PC-SPC 0.5699 0.2105 0.1200
MLmlt-FS-VPC 0.6759 0.1622 0.1096
MLsgl-PC-TSS 0.4156 0.2424 0.1007
MLsgl-PS-VPC 0.5315 0.1852 0.0984
MLmlt-PC-VPC 0.5699 0.1714 0.0977
MLsgl-PC-SPC 0.4156 0.2308 0.0959
MLsgl-FS-VPC 0.5736 0.1408 0.0808
MLmlt-PS-SPC 0.6477 0.1132 0.0733
MLsgl-PS-SPC 0.5315 0.0889 0.0472
MLsgl-PC-VPC 0.4156 0.1081 0.0449
MLsgl-FS-SPC 0.5736 0.0755 0.0433
MLmlt-FS-SPC 0.6759 0.0000 0.0000

6.9.3 Qualitative discussion of NorthEuraLex scenarios

To put some flesh on the performance measures on all of NorthEuraLex, we now
turn back to the case studies discussed in Chapter 4. In the four following sub-
sections, the lexical flow network inferred by the MLmlt-FS-UFR variant of the
PLFI algorithm is given along with a second visualization which is color-coded
for the difference to the gold standard.

In the result graphs as in the gold standard, green arrows represent lateral con-
nections for which directionality information could be inferred, and green lines
mark lateral connections with conflicting evidence of directionality. In addition,
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yellow is used for links for which no causal evidence is available (typically iso-
lated groups of two languages), and black arrows show the Glottolog tree which
was part of the input, and remained an immutable part of the skeleton during
all computations. The thickness of the lines symbolizes the unexplained cognacy
overlap at the end of skeleton inference, i.e. the ratio of shared lexical material for
which no other paths through the remaining graph exist. Evaluating these link
weights in the lexical flow networks inferred by my algorithms would require
a much more fine-grained gold standard which includes not only the contacts
discussed in the literature, but a quantification of each contact’s strength in ad-
dition. Some of this work was already done when compiling the gold standard,
where some links will be left out because they did not seem to concern the subset
of the lexicon covered by the database, but as we are going to see in the following
discussion, even this simple pre-selection was not very successful. An evaluation
of inferred contact strengths would therefore require a much more refined gold
standard building on intersecting available lists of loanwords for many language
pairs with the NorthEuraLex data, which will have to be postponed to future
work.

In the evaluation scheme I will use here, the evaluation graph symbolizes the
fit of the inferred lexical flow network to the gold standard. It does not include
link weights, but otherweise uses the same layout as the result graph, to which
it adds red as well as additional dashed and dotted grey lines and arcs to high-
light all types of errors in both the inferred skeleton and the inferred direction-
ality information. The predefined phylogenetic tree backbone remains in black.
Filled green arrows now stand for directional influences between related and
unrelated languages that are compatible with the gold standard, whereas green
lines symbolize lateral connections between related languages, which are always
acceptable as possible artifacts because of imperfect phylogenetic trees or non-
tree-like signals caused by dialect continua and similar phenomena leading to
overlapping isoglosses. Empty green arrows represent links among related lan-
guages for which no directional contact is in the gold standard, but which are
directional in the result.

Other edge types encode various types of errors. Dotted light gray is used
for false negatives in skeleton inference, i.e. lateral connections that were part
of the gold standard, but are not found in the result graph. These arrows are
kept rather unconspicious because the type of error they symbolize is arguably
less problematic than the other categories. Spurious links (false positives in the
skeleton inference) are dashed lines in dark gray, a pattern which is used for both
arrows and undirected links between unrelated languages that are not justified
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6 Phylogenetic lexical flow inference

by the gold standard. Finally, red is the color of the most problematic types of
errors. Red lines with the empty diamond have the inverse direction to the one
they should have according to the gold standard, whether among a pair of re-
lated or unrelated languages. Red lines are correctly inferred links which have
a directionality in the gold standard, but are either bidirectional or undirected
in the result. Figure 6.4 summarizes the different edge types used in evaluation
graphs for easier reference. Intuitively, evaluation graphs with large numbers
of red connections indicate low performance, and a perfect network would only
contain black and green (plus perhaps some dotted) connections.

predefined arrow (defined by underlying tree)
correct directed link across families (skeleton TP, arrow TP, arrow TN)
correct directed link within family (skeleton TP, arrow TN)
correct undirected link (skeleton TP, arrow TN)
spurious arrow within family (skeleton TP, arrow FP)
inverted arrow on correct link (skeleton TP, arrow FP, arrow FN)
missing arrow on correct cross-family link (skeleton TP, arrow FN)
spurious directed link (skeleton FP)
spurious undirected link (skeleton FP)
missing directed link (skeleton FN)
missing undirected link (skeleton FN)

Figure 6.4: Summary of combined color, line style and shape coding
used in evaluation graphs

After a quick summary of the result for each case study, I will mostly focus on
individual cases of red and spurious links, and go into the details of the compu-
tation to elucidate why this variant of PLFI failed on these links. These investiga-
tions will help to get a full picture of why PLFI is not a perfect method, and lead
to some ideas for possible future improvements beyond the current state.

6.9.3.1 Case study 1: The Baltic Sea area

Already at first glance, the visualization of results for the Baltic sea case in Fig-
ure 6.5 displays only very few errors. The major contacts in the area are all in-
ferred successfully: North Germanic influence on Western Saami (here imper-
fectly represented as influence from Norwegian on the individual languages),
Russian influence on all the minority languages on its territory (invisible in the
cases of Veps and North Karelian, due to the mentioned purism of the sources),
Swedish influence on Finnish, and Latvian loans in Livonian.
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Figure 6.5: Result graph (top panel) and evaluation graph (bottom
panel) of phylogenetic flow on Baltic Sea data
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Some other influences in the gold standard, such as the Baltic influence on
Finnic and the Finnic influence on Saami, were not visible in the data, most likely
because the multi-value reconstruction these results are based on did not project
sufficiently many cognate sets to the level of these proto-languages.This is some-
thing we will observe in many cases, due to the cautious reconstructions in this
paradigm. Only in graphs derived from single-value reconstructions do the num-
bers of cognate sets in the ancestral languages become so high that influences
between them cannot be explained away completely by their descendants.

Other contacts in the gold standard are imperfectly represented by undirected
lateral signals, such as the German influence on the continental Scandinavian
languages.This is represented by an inverted link fromGerman to Danish, whose
close relationship with Norwegian is recognized, but not as directional, and a
second lateral connection involving Dutch and Swedish.This part of the skeleton
could hint at a problem with the language sample in this case study, since much
of the German material in Danish and Swedish was actually borrowed from Low
German, an unobserved language the closest relative to which in our dataset is
Dutch. A different problem causes the spurious link from Icelandic into Estonian.
This should actually be another link fromGerman, the Germanic language which
by far had the largest lexical influence on Estonian. Now the problem is that some
of the material shared with German can be inferred as having flowed through
Livonian, which contains an even larger share of German loanwords. Some other
Germanic words which cannot have travelled via Livonian are present in rather
archaic forms in Icelandic, causing most cognates for the remaining overlap to
be detected for that language instead of other Germanic languages.

The wrong directionality of the arrow from Danish into German is simply due
to the fact that the unshielded triple dan — deu — Franconian is detected to be
a v-structure due to a very low UFR score of 0.0013. This erroneous low score is
due to high overlap of 461 words between Danish and reconstructed Franconian,
of which not a single item can be explained only by paths going through German.
This is due to the existence of alternative routes, one through inheritance from
Germanic, and the other through the Dutch-Swedish connection. We thus have
a case where the logic of UFR breaks down due to the complex interplay of path
configurations.

Coming to the final inverted arrow liv → deu, here it is the unshielded triple
lav — liv — deu which does not look like a v-structure at all. This triple has a
very high UFR score of 0.6364, caused by the fact that out of the 22 items shared
exclusively by Latvian and German (mostly German loans in Latvian), 21 are
also shared by Livonian. From the pattern lav → liv ◦—◦ deu which arises after
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Latvian influence on Livonian was successfully detected, the propagation rule
infers the erroneous link liv → deu because otherwise a previously rejected v-
structure would have to be assumed. To interpret the result, to the flow model
Livonian very much looks like a transmitter of Latvian words into German, after
having explained away the contact link from German into Latvian demanded by
the gold standard.

To sum up, the two serious mistakes that were produced for this scenario are
caused by the fact that the UFR-based v-structure test is not as reliable as it would
have to be to guarantee a correct result. As always in constraint-based causal
inference, even a single erroneous v-structure test can have strong effects due
to propagation. Interestingly, the alternative method TSS has no problem at all
to assign the correct directionality to the arrows involving German, once more
showcasing the motivation for the alternative method. Since the TSS method
makes other mistakes, a way towards avoiding inverted arrows (the worst type
of mistake) could be to aggregate the results of both methods, only returning the
arrows on which all directionality inference methods agree.

6.9.3.2 Case study 2: Uralic and contact languages

Moving on to the second case study, we see in Figure 6.6 that while there are
a few more problematic arrows, the overall results are still rather convincing.
Since the Western part of this case study was already covered by the previous
experiment, I will not comment further on the Baltic Sea area here, except for
one interesting point. In the absence of Dutch from the language set, the West
Germanic material present in Swedish is now inferred as being shared with Stan-
dard German, the only West Germanic language remaining in the dataset. This
highlights one property of the inference method: if relevant languages are not
part of the dataset, the method will find the most plausible explanation involving
only the attested languages and their recontructed ancestors. The addition or re-
moval of one language can have consequences beyond the immediate vicinity of
the language in question, due to alternative routing of lexical flow and changed
propagation patterns for directionality information.

Moving to European Russia, we see that themost dominant trend of the region,
the pervasive influence of Russian on many of the minority languages of the
Russian Federation is inferred correctly (dark green arrows pointing outwards
from rus). The spurious arrows mainly concern inferred secondary influences be-
tween branches of Uralic, on which there is often no consensus among scholars,
and which are therefore not represented in my gold standard. For instance, the
inferred influence of Komi (koi) on Khanty (kca) is not implausible at all, and
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neither is Khanty influence (kca) on Mansi (mns). On the other hand, most of the
long-distance arrows are clearly spurious, such as influence of Estonian (ekk)
on Hungarian (hun), and of Erzya (myv) on Mansi (mns). Let us inspect a third
example, the reconstructed secondary influence of Udmurt (udm) on Nganasan
(nio), more closely. The reason why the link remains during skeleton inference
is legitimate: there is some material shared between Samoyedic and the Permian
languages, but not the rest of Uralic. The reason why Nganasan and Udmurt
were selected to model these lexical isoglosses is again due to the imperfect na-
ture of the cognate detection. All the other Samoyedic languages have under-
gone much more disruptive sound change than Nganasan, causing the system
to find more cognates between the more conservative Nganasan and the other
Uralic languages. To a lesser extent, the same pattern applies on the Permian side,
where Udmurt has undergone fewer sound changes than Komi. Finally, the erro-
neous arrow is caused by the fact that according to the UFR criterion, the Erzya
(myv) lexicon does not look like a mixture of Russian and Udmurt, and neither
does Udmurt form a v-structure with Erzya and Nganasan, causing the arrow
from Russian into Erzya to be propagated by the principle of avoiding additional
v-structures.

While a connection of Romanian (ron) with Bulgarian (bul) is inferred correctly
by skeleton inference, the directionality of influence between the two languages
is inferred to be the opposite of the real situation, where the Romanian lexicon
is an obvious mixture of Slavic and Romance elements. The problem here is that
Romanian is the only Romance language in the dataset, meaning that on the
reduced skeleton, the mixed character of the Romanian lexicon would have to
be detected from a v-structure Indo-European → ron ← bul with Bulgarian
or some other Slavic language. The UFR score for this triangle is rather close to
zero at 0.0340, but not close enough for our empirically determined threshold.
An additional Romance language in the dataset would yield a much cleaner v-
structure Romance → ron ← bul, whereas too little of the Romance material
in ron can be reconstructed for Indo-European.

A second interesting area where some problems of the method become visible
is the interaction between the Turkic and Uralic languages of the Volga region.
The inferred network displays some shared material between Chuvash (chv) and
the two Mari languages (mrj and mhr), but cannot decide on the directionality of
either connection. According to the gold standard, there should be arrows from
Chuvash into both Mari languages, but this presupposes that mrj → chv ←
mhr is not a v-structure. Unfortunately, a v-structure is exactly what we get by
the UFR criterion, since on the rather dense skeleton, transmission via chv is
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6 Phylogenetic lexical flow inference

not needed to explain even a single item shared between chv and both variants
of Mari, as all of these are projected up to Proto-Mari. Here, the fact that local
criteria are used is really showing its negative consequences, because nothing
forces the model to explain how this Turkic material ended up in Proto-Mari,
which is independent of any Turkic influence conditioned on its two descendants.

A larger part of the Turkic element in Meadow Mari (mhr) is wrongly at-
tributed to influence from Bashkir (bak), as it is correctly inferred for Udmurt.
As the orange color indicates, this is a problem of skeleton inference. Here, the
reasons can be traced back to the fact that cognacy data are too coarse-grained
to distinguish between different closely related donor languages. While Chuvash
and Bashkir are not very closely related, their divergence has primarily happened
on the phonetic level, which is not visible in the inferred cognacy data. Taking
a look at the actual forms, it instantly becomes clear that Chuvash has been the
main source of Turkic material in Mari, but this fact is hidden by the cognate
set abstraction. A future improved measure of conditional mutual information
which is computed from phonetic distances (see §6.1.1) could prove superior here.

While skeleton inference performed with good overall precision, the one truly
inexplicable link remaining in the inferred skeleton is the connection between
the Balto-Slavic and Samoyedic proto-languages. Inspecting the cognate sets the
distribution of which is explained by flow on the spurious link, we see that it
mainly consists of Balto-Slavic cognate classes for concepts like apple and cat.
As Russian loanwords, these cognate classes are also present in a majority of
Samoyedic languages, causing them to be reconstructed for the proto-language.
It is unclear how this effect can be avoided in general, and how the system could
successfully infer that a widespread cognate class in a minority language family
might be due to separate borrowings from the majority language, without prede-
termining the desired result by explicitly modeling which languages are majority
and minority languages. This problem is going to become even more visible in
the Siberian case study.

6.9.3.3 Case study 3: The linguistic landscape of Siberia

The Siberian data display the same large-scale pattern which we already saw in
European Russia: all the minority languages have borrowed much of the vocab-
ulary for modern life from Russian. As desired, this pattern also appears as the
dominant feature of the linguistic area in the inferred lexical flow network visu-
alized in Figure 6.7. However, two of the arrows, the ones from Russian to Sakha
(sah) and Evenki (evn), do not have the desired direction. Again, the reason lies in
incorrect results of v-structure tests.The triangle bua — sah — rus does not look
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6 Phylogenetic lexical flow inference

at all like a v-structure, because a very large part of the material shared between
Russian and Buryat (bua) is also shared with Sakha, to the point where in a sim-
ilar pattern to the German-Livonian problem discussed before, conditioning on
Sakha actually screens off Russian from Buryat. Due to the failed v-structure test,
the correct arrow from Buryat into Sakha is propagated into Russian. The other
failed test is for the v-structure Tungusic → evn ← rus which again misses the
UFR criterion, albeit at a rather low UFR score of 0.057. Since the inheritance
from Tungusic is fixed, the only way to resolve this triple in such a way that no
v-structure arises, is again by inferring an arrow into Russian.

Coming to the spurious connections, the influence of Russian on the two Yuk-
aghir languages was detected as going into Proto-Yukaghir, again because of the
impossibility for the reconstruction algorithm to decide that a cognate class ap-
pearing in both daughter languages should not be projected to the proto-lan-
guage. Assuming two separate arrows into the two individual languages is sim-
ply not the parsimonious solution if we do not include the knowledge that Proto-
Yukaghir had already ceased to exist when the Yukaghirs were colonized. Exactly
the same problem also leads to the spurious connections between Russian and
Proto-Chukotko-Kamchatkan as well as between Russian and Eskimo-Aleut.

An erroneous v-structure sah ↔ xal ← kaz is inferred due to zero unique
flow between the Turkic languages across the Mongolic language xal, indicating
that the true pattern sah ← xal ← kaz is very unlikely. In fact, the inferred
configuration is not as incorrect as the evaluation criteria imply. Arrows between
xal and kaz in both directions can be justified based on the gold standard, as it
includes arrows Mongolic → kaz and Kipchak → xal. The problem can thus
be reduced to the fact that Kipchak is not a node in the reduced tree for this
scenario, because other Kipchak languages like Bashkir and Tatar are not part of
the language sample.

The spurious connections of Selkup (sel) to Chinese and Itelmen are due to
a slightly too high noise level in cognate detection. For instance, Selkup and
Chinese have an overlap of 28 cognate classes according to the inferred cognacy
relation, and the 0.025 threshold would have kicked in at 25 cognate classes. This
scenario also provides a nice example for why spurious connections are very
problematic, because the Selkup-Chinese connection is also responsible for the
inverted arrow from Japanese into Chinese, due to an inferred v-structure sel
→ cmn ← jpn. Still, by focusing only on all of these problems one must not
forget that in many other cases, PLFI works just as intended, and that many of
these errors will disappear under the TSS directionality criterion, again making
the case for a combined approach to enhance stability.
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6.9 Evaluation of PLFI

6.9.3.4 Case study 4: A visit to the Caucasus

With the Caucasus scenario, we finally encounter the most complex test case.
As can be seen on visual inspection of the evaluation graph in Figure 6.8, the
more peripheral influences from Arabic and Russian into the Caucasus area are
inferred correctly, but in the chaotic situation among Caucasian languages, there
is just too much interacting and contradictory signal for PLFI to perform well.

The problems within Daghestanian might also be due to imperfections in the
gold standard (the Caucasus being the only region where it was almost impossi-
ble to find literature on language contacts for some languages), but the case of
Georgian (kat), an isolate in this dataset, points to a further issue that requires
some consideration.

The underlying signal indicating language contact always comes in the shape
of cognate classes present in some child language of an ancestral language which
does not contain them, but a more distant language does. This is the pattern
which makes the data non-tree-like, and causes lateral connections that cannot
be explained away. Now, the directionality inference can recognize that the re-
cipient language is a mixture of its own ancestor and the donor language. This
entire mechanism cannot work reliably for isolated languages, because there is
no proto-language in the model, and if we assumed an additional proto-language
representing an earlier stage of the isolate, the reconstruction algorithm could
not decide based on the single descendant language which cognate classes must
have existed at that node, and would project all the inherited material up into the
proto-language. The only reason why the arrow from Russian into the Siberian
isolate Ket was inferred successfully in the previous case study was the other
erroneous arrow from Sakha into Russian. This problem only occurs among iso-
lates, however. An additional Slavic language in the dataset would have shared
most of the Russian loans as well, and Proto-Slavic would have provided the nec-
essary third language for a negative collider test involving the link from Ket into
Russian. In a sense, the method faces the same limitations which historical lin-
guists face when trying to infer the directionality of loans between isolates. This
is notoriously difficult to do, and can only be done when loanwords are recogniz-
able due to language-internal reasons, e.g. because they do not adhere to some
phonological constraints governing the rest of the lexicon.

Finally, let us investigate why the important connections tur → kmr and pes
→ tur could not become part of the skeleton. The reason is that with Azeri (azj),
there is another Turkic language that is lexically very close to Turkish, but has
interacted with both Iranian languages even more, because of lexical contact on
a more equal footing with Kurdish as minority languages of Iran. The overlap
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Figure 6.8: Result and evaluation of phylogenetic flow on Caucasian
data
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of Azeri with Persian and Kurdish therefore subsumes the overlaps of both lan-
guages with Kurdish, leaving only the links with Azeri in the skeleton. The sig-
nal behind the spurious arrow from Azeri into Kurdish is actually the one which
should have created the missing arrow from Turkish into Kurdish.

Finally, let us explore why the nature of Azeri and Uzbek as Turkic languages
with many Persian loans is not understood by the algorithm, which instead pro-
duces the wrongly directed arrows azj → pes and uzn → pes. Here, Persian
is the language which looks like a mixture of elements of Azeri and Uzbek, the
assumed transmitted material being exactly the Persian loans the two Turkic
languages share, because these are projected into and then explained by Turkic.
On a more abstract level, this phenomenon is another example of how the indis-
tinguishability of inherited words and widespread loans can result in erroneous
arrows. Unlike other erronous v-structures, this is purely a reconstruction prob-
lem which also hits the TSS criterion, where the arrow uzn → pes has an evi-
dence ratio of 3.575. In the global NorthEuraLex network, this problem does not
occur, because the many other Turkic languages untouched by Persian produce
a Turkic reconstruction that does not contain any of these. The situation could
therefore be improved by considering more Turkic languages. It is an interest-
ing question whether to a historical linguist, all the Persian elements in Turkish
and Uzbek would actually be recognizably foreign if only three Turkic languages
were attested.

6.9.4 Evaluation on simulated data

As the final analysis in this chapter, we now return to the simulated data. There
are two important questions answers to which the simulated data will help us
find. First, we want to quantify how much potential performance we lost by us-
ing ancestral state reconstructionmethods and acting as if the reconstructed data
were actually observed. Second, we want to know whether the performance on
the simulated data is comparable to what we observed on NorthEuraLex, and
whether our previous findings about the relative advantages of the different
skeleton and directionality inference methods generalize beyond my dataset.

We start by comparing the skeleton performance measures for the three skele-
ton inferencemethods on the perfect data (i.e. the picture we get if we take the ac-
tual states of the simulation when the proto-languages split) to the results on the
two best reconstructions.The results are given in Table 6.6. If the best skeleton in-
ferencemethod is picked on both types of data, we see an onlymoderate decrease
in F-score from about 87% to 79% for the more exact single-value reconstruction,
and to 74% for themore generousmulti-value reconstruction. Precision and recall
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6 Phylogenetic lexical flow inference

Table 6.6: Comparing skeleton performance for perfect ancestral data
and the two best reconstructions

# PrfPC PrfPS PrfFS
skPrc 0.901 0.870 0.829
skRec 0.780 0.915 0.915
skFsc 0.837 0.892 0.870

# MLsPC MLsPS MLsFS
skPrc 0.851 0.798 0.711
skRec 0.539 0.722 0.659
skFsc 0.660 0.758 0.684

# MLsPC MLsPS MLsFS
skPrc 0.855 0.797 0.710
skRec 0.527 0.720 0.658
skFsc 0.652 0.757 0.683

suffer about equally, showing that the reconstructed data contain a more noisy
version of the same signal. We see that a good reconstruction method can help us
a longway towards results comparable towhatwewould get on perfect data, con-
firming our impression that it is possible in principle to extract information about
historical language contacts from a cognacy-encoded dataset covering only their
living descendants. Interestingly, while flow-separationmethods worked best for
the NorthEuraLex data, the performance of PS is comparable on perfect data, and
even superior on the reconstructed data, especially due to a much higher recall at
comparable precision. Interpreting this result, erroneous reconstructions appear
to have a rather strong effect on the reliability of connecting paths, indicating
that while not clearly superior on perfect data, on noisy reconstructions the PS
variant is surprisingly robust.

The consequences of reconstruction vs. observed data for arrow performance
are again not easily quantifiable in our framework, because they result in differ-
ent skeletons. Still, within each variant we can compare the arrow performance
resulting from the different directionality inference methods. To maintain com-
parability with the NorthEuraLex results, only the numbers for the FS method
are given in Table 6.7. The apparently low arrow performance for the perfect an-
cestral data is due to the higher skeleton recall, which leaves many weak links
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Table 6.7: Comparing skeleton performance for perfect ancestral data
and the two best reconstructions

FS on perfect ancestral data
VPC SPC UFR TSS

arPrc 0.414 0.362 0.438 0.371
arRec 0.415 0.313 0.585 0.366
arFsc 0.414 0.336 0.501 0.368

FS on MLsgl reconstruction
VPC SPC UFR TSS

arPrc 0.490 0.512 0.432 0.555
arRec 0.362 0.290 0.423 0.343
arFsc 0.417 0.370 0.428 0.424

FS on MLmlt reconstruction
VPC SPC UFR TSS

arPrc 0.485 0.508 0.435 0.561
arRec 0.354 0.288 0.422 0.347
arFsc 0.409 0.368 0.428 0.428

in the skeleton where overlaps are small and directionality evidence therefore
uncertain.

Instead, these numbers provide us with a further piece of the answer to the
second question. Contrary to what we saw on the NorthEuraLex dataset, TSS di-
rectionality can now compete with the UFR criterion across reconstructions.The
theoretical considerations leading to the TSS method seem to apply much better
on this dataset. So what is the underlying reason?The only obvious difference be-
tween the two types of scenarios is that the simulated data have perfect cognate
clustering, whereas the automated cognate clustering that I performed to derive
cognacy overlap data from NorthEuraLex is quite noisy. Essentially, this noise
causes non-zero values for 𝛿 even in unshielded colliders, making these more dif-
ficult to detect, and preventing the TSSmethod from reaching its full potential. In
contrast, the UFR method can handle noise much better, but as we have seen in
the case studies, it tends to run into problems in dense graphs where unshielded
triples are rare, which is the case in the Caucasus as well as in many of the simu-
lated scenarios. The fact that the statistical assumptions behind causal inference
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Table 6.8: Analysis of consequences of reconstructed data for selected
PLFI variants

PLFI Variant perfect data MLsgl (diff) MLmlt (diff)
FS-UFR 0.436 0.293 (-32.8%) 0.293 (-32.8%)
FS-VPC 0.360 0.285 (-20.8%) 0.279 (-22.5%)
PS-VPC 0.346 0.273 (-21.1%) 0.271 (-21.7%)
FS-TSS 0.320 0.290 (- 9.4%) 0.293 (- 8.4%)
PC-VPC 0.313 0.232 (-25.9%) 0.237 (-24.3%)
FS-SPC 0.292 0.253 (-13.4%) 0.251 (-14.0%)

hold much better for perfect cognacy judgments also shows in the much better
performance of the VPC and SPC directionality inference methods on the simu-
lated data. While both were completely useless on noisy cognacy data, on clean
cognacy data they do manage to capture some of the signal, although their re-
sults remain very unreliable, and the specialized directionality inferencemethods
perform better by a significant margin.

Again, we can combine skeleton and arrow F-scores bymultiplication to derive
an overall performance figure for each of the compared methods, which makes it
possible to quantify approximately how much overall performance we lose due
to reconstruction. The resulting numbers are ranked by the best result on perfect
ancestral data in Table 6.8, which compares the performance on the two recon-
structions against the perfect data, also quantifying the losses or gains in percent-
ages. Overall, the FS-UFR variant is clearly the best-performing on the perfect
data, whether FS-TSS is the best on reconstructed data. Moreover, most meth-
ods perform between 20% and 30% worse on both single-value and multi-value
ML reconstruction on the perfect data. Encouragingly, the specialized direction-
ality inference method TSS does not follow the general pattern, but provides a
method that at less than 10% decrease is stable against the negative consequences
of reconstruction, and this at moderate performance.

Finally, we can compare the combined scores to elucidate to what extent the
methods behave similarly on the simulated and the NorthEuraLex data. In Ta-
ble 6.9, the different variants are ranked by their overall performance on the
simulated data, and the equivalent figure on the NorthEuraLex data is given for
comparison. The difference in percent, plus the rank of each method in the rank-
ing by performance on the NorthEuraLex data, are given in addition to facilitate
interpretation of results. Apart from the already mentioned advantage of TSS on
simulated data, and of UFR on noisy-cognate data, the methods agree on four
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Table 6.9: Comparison of PLFI variants between datasets

PLFI Variant simulated NorthEuraLex difference rank on NELex
MLmlt-FS-UFR 0.293 0.392 +0.099 1
MLmlt-FS-TSS 0.293 0.349 +0.056 2
MLsgl-FS-TSS 0.293 0.344 +0.051 3
MLsgl-FS-UFR 0.290 0.324 +0.034 4
MLsgl-FS-VPC 0.285 0.081 -0.204 9
MLmlt-FS-VPC 0.279 0.110 -0.169 6
MLsgl-PS-VPC 0.273 0.098 -0.175 8
MLmlt-PS-VPC 0.271 0.134 -0.137 5
MLsgl-FS-SPC 0.253 0.043 -0.210 11
MLmlt-FS-SPC 0.251 0.000 -0.251 12
MLmlt-PC-VPC 0.237 0.098 -0.139 7
MLsgl-PC-VPC 0.232 0.045 -0.187 10

of the top-five methods, and the advantage of specialized skeleton and direction-
ality inference techniques persists for the simulated data. This shows that my
findings for NorthEuraLex generalize well to the simulated data, validating both
the simulation model and the PLFI paradigm.

To summarize my findings, the PLFI paradigm of reconstructing ancestral cog-
nates and treating them as additional observations in a causal inference paradigm
has turned out to work reasonably well, although the quality of results depends
a lot on the quality of the reconstruction as well as the choices of skeleton and
directionality influence algorithms in the causal framework. The most impor-
tant positive result of the evaluation is that the recall values for the skeleton are
high, indicating that if lateral connections exist in the data, they will generally
be present in the lexical flow graph. Also, the skeleton precision values indicate
that about three quarters of the lateral connections in the graph will turn out to
correspond to actual contacts on closer examination. This shows that PLFI lives
up to its promise as a promising exploratory tool for historical linguists in the
initial stages of clarifying the linguistic history of a region. Directionality infer-
ence is less reliable, but we have seen that in scenarios involving the contacts
between larger families (and not isolates), about four out of five inferred arrows
will have the correct direction. On the downside, deciding whether influences
occurred between extant languages or their ancestors turned out to be very diffi-
cult and unstable across different reconstructions, which guides us towards the
less ambitious contact flow task that will be tackled in the next chapter.
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Having established PLFI as an exploratory tool for detecting directional contact
in the linguistic history of a region, we now turn towards the second task which
we set out to tackle within the lexical flow framework. After a summary of where
we stand after Chapter 6, and after an overview of what will be different in this
chapter, in §7.2 I explain why the contact flow inference problem has the shape
of a causal inference problem with hidden common causes.

In §7.3, I explain why the vanilla RFCI algorithm as introduced towards the
end of Chapter 3 for causal inference problems of this shape, is difficult to apply
on the basis of noisy cognacy overlap data. §7.4 describes my most successful at-
tempt to compensate for these weaknesses, which is to define a significance test
for v-structure decisions based on a very close connection with the hypergeo-
metric distribution. The resulting variant of the RFCI algorithm is called Contact
Lexical Flow Inference (CLFI), and is presented both in pseudocode and as an
informal description in §7.5.

§7.6 evaluates the different CLFI variants resulting from different approaches
to skeleton and arrow inference on the same real and synthetic datasets which
were already used in the previous chapter. For this purpose, the evaluation met-
rics have to be adapted to the new problem, and phylum separation is added as
a new performance criterion.

An early version of contact flow inference was previously discussed in Dellert
(2016a). There, the method was tested on an older version of NorthEuraLex for
a language set similar to the current Uralic case study, with promising results
which the version presented in this chapter does not significantly improve upon,
although it performs better on other case studies.

7.1 The contact flow inference task

To recapitulate the core ideas of lexical flow inference, we systematically com-
pare the cognate overlaps between pairs of languages with other languages in
order to find deletable links in a graph which represents paths of lexical trans-
mission. After thinning out the graph structure in this way until no further link
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can be deleted, we knowwhich contacts weminimally need to assume in order to
explain the observable overlap patterns. In this structure, we compare the over-
lap patterns among triples of languages in order to extract hints of directionality,
with the goal of assigning a directionality to each link in the lexical flow network.

In phylogenetic lexical flow inference, the common ancestors of observed lan-
guages were modeled explicitly by reconstructed data, turning every language
into a mixture of lexical material transmitted via one of the incoming arrows,
with some noise added due to lexical replacement. Such a phylogenetic lexical
flow network can be interpreted as a full theory of how the lexicon of each ob-
servable language was shaped by inheritance and contact. Since the method is
in principle powerful enough to reconstruct contact between proto-languages,
PLFI is a fully general method for evolutionary network inference.

Contact network inference can be seen as a synchronic variant of the same
basic idea, with a more modest goal. We still attempt to infer directional contact,
but only on the level of living languages, without trying to infer when in the his-
tory of each language the transfer in question happened. We are thus on the very
common and familiar description level of talking e.g. about French loans in En-
glish instead of Norman French loans into Middle English, which would be more
exact from a diachronic perspective, and the desired outcome of phylogenetic
flow inference.

Given the shape of the contact flow inference problem, it is obvious that if
we continue to treat languages as variables, and measure dependencies between
languages in terms of cognacy overlap, we are now faced with hidden common
causes, namely the proto-languages which were modeled explicitly in phyloge-
netic lexical flow inference, and now create overlap that is not explainable by
directed lateral transmission.

While being conceptually simpler, contact flow inference is clearly a less nat-
ural problem than phylogenetic flow inference. Since its results do not contain
any temporal component such as earlier proto-languages, the resulting graphs
cannot be considered evolutionary networks by any definition. Moreover, in con-
tact networks similarities due to common inheritance will appear in the shape
of bidirected links, and will be difficult to distinguish from bidirectional contact,
which will make the resulting graphs more difficult to interpret and evaluate.

7.2 Advantages and disadvantages of contact flow

The decisive advantage of contact flow inference in comparison to phylogenetic
flow inference is that by removing the need for reconstructed proto-languages in
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the cognacy overlap data, we will be getting rid of an important source of errors
that we have seen appear over and over again in the discussion of the case studies
in Chapter 6.

Also, the results will be more grounded in observable facts, as we do not need
to build on possibly unrealistic phylogenetic assumptions, and there is no major
free parameter like the choice of reconstruction method, which previously influ-
enced result quality so much that it would make or break PLFI as an exploratory
tool. In contrast, contact flow inference is a much more data-driven process, and
it will not be a surprise that it yields comparatively stable results.

Finally, the absence of proto-languages leads to a smaller problem size for
the causal inference methods. This causes significant reductions in running time,
which can in the worst case increase exponentially with the number of languages.
Depending on the algorithm variant, executing PLFI on the entire NorthEuraLex
dataset (107 languages) takes about two to six hours on a single 2 GHz core,
whereas the CLFI analysis developed in this chapter never takes more than 20
minutes. Since this difference is bound to become even more pronounced with
larger problems, CLFI is clearly a lot more feasible for large-scale exploratory
data analysis.

Coming to the disadvantages of CLFI, implementing and tracing the behavior
of the algorithm is quite a bit more challenging than it was for PLFI, since we
can no longer assume causal sufficiency, and enter the realm of causal inference
with latent confounders. As the reader will remember from Chapter 3, this type
of causal inference requires a lot more formal machinery, leaves many more de-
tailed choices to the implementation, and comes with a much smaller trove of
practical experience gained from applying it to different problem domains.

7.3 Difficulties in applying the RFCI algorithm

What happens if we simply use the existing standard algorithm for causal infer-
ence in the presence of latent confounders, and run the RFCI algorithm presented
in Chapter 3 on our cognacy-based conditional independence test? It turns out
that the absence of additional, reconstructed languages leads to slightly more re-
liable independence checks, but also that, due to the more comprehensive prop-
agation rules, the consequences of a single wrong result in the v-structure tests
can be even more severe than what we have seen in the PLFI case studies.

For instance, consider a run of the RFCI algorithm on the Baltic Sea scenario.
Among many correct v-structures such as fin ◦→ olo ←◦ rus (Olonets Karelian
having a large inherited overlap with Finnish, and some Russian loans), the sep-
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arating set criterion also creates an erroneous v-structure olo ◦→ rus ←◦ lav,
where Russian looks like a mixture of Olonets Karelian (the Russian loans) and
Latvian (the inherited stock of shared Balto-Slavic words). Now, the (arguably
correct) absence of a different v-structure leads to a first propagation, turning
olo ↔ rus ◦—◦ pol into olo ↔ rus → pol. rus → pol is an acceptable arrow
(there are indeed some Russian loans in Polish, in addition to the common Slavic
material inherited by both languages), but this is more of a lucky coincidence.
In the next reasoning step, the new arrow into Polish creates one of the precon-
ditions for one of the RFCI-specific propagation patterns, namely rule ℛ4. The
pattern in question is rus ←◦ lit ◦→ pol ← rus, for which the bidirected erro-
neous arc provides a discriminating path olo ↔ rus ←◦ lit ◦→ pol, on which
it turns out to be impossible to delete any link, which leads to rus ↔ lit ↔
pol ← rus. Finally, the new bidirected link combines with the non-collider pol
↔ lit ◦→ lav to create the wrong arrow lit → lav. To summarize, it turns out
that the root cause for the erroneous arrow between two Baltic languages was
a failed v-structure check involving a Uralic minority language in Russia. While
the details of these computations might have been difficult to follow, it should
now be very clear to how much trouble a single erroneous v-structure test can
lead in the RFCI algorithm, and why this means we cannot expect vanilla RFCI
to work well on our noisy data. On the plus side, even when the RFCI rules ℛ5
toℛ7 dealing with selection bias were activated, they were almost never applied
in my test runs, showing that at least the absence of selection bias is detected by
RFCI.

While my independence tests appear to be good enough for direct application
in RFCI, for the v-structure tests I again need to rely on specialized more stable
heuristics such as UFR and TSS. In phylogenetic flow inference, every collider
had the shape 𝐴→𝐵←𝐶 , representing the lexicon of 𝐵 to be a mixture of ma-
terial from languages 𝐴 and 𝐶 . The problem in contact flow inference is that
colliders can now be formed by any combination of bidirectional and directional
arcs. Since bidirectional links represent the existence of hidden common causes,
we would expect every link between related languages to be bidirectional, wher-
eras cross-family contacts should lead to unidirectional links. Consequently, we
get colliders that represent very different underlying histories.

For the Baltic Sea scenario, the collider swe → fin ↔ krl arises from a sit-
uation where one of two closely related languages borrows material from a lan-
guage belonging to a different family. In contrast, the collider deu → ekk ←
rus represents two cross-family contacts where the donor languages are related.
Each of these different scenarios will lead to radically different three-way over-
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lapping patterns, making collider tests much more difficult. For instance, the first
collider will not lead to any overlap between Swedish and Karelian, whereas such
overlap exists for the second collider, due to both donor languages being related.

In principle, it would be conceivable to extend TSS to cover the new problem
shape, but instead of fitting the three-way overlap to one possible collider sce-
nario 𝐴→𝐵←𝐶 , we would then have to model four different scenarios, and
derive predictions for each of these scenarios in order to catch the full range of
overlap patterns which can result from local collider scenarios. This leads to a
much more difficult problem shape for the already difficult binary classification
problem to decide whether a triple of languages forms a collider or not. Instead
of going down this not very promising road, I will now develop an alternative
test which does not rely on triangle scores, but still performs better than the
separating set criterion.

7.4 Significance testing for v-structures

Taking a step back from the RFCI algorithm and considering the problem of infer-
ring v-structures from cognacy data, it turns out that the basic intuition behind
the criterion applied by the algorithms can be tested much more strictly on dis-
crete cognacy overlap data. Recall again that the essential idea behind inferring
a v-structure 𝐴 → 𝐵 ← 𝐶 in the PC and RFCI algorithms was to decide whether
𝐵 was necessary to separate 𝐴 and 𝐶 . What does this mean in terms of overlaps
between cognate sets?

The observation I used in deriving UFR was that for 𝐵 not to be necessary for
separation, all cognate sets with reflexes in 𝐴 and 𝐶 must also have had reflexes
in neighbors forming possible flow paths between 𝐴 and 𝐶 not going through
𝐵. For instance, to show that English was not necessary for separating Icelandic
from French, and therefore establish English as a collider in this triangle, we
need to show that there is an alternative path by which all the overlap between
Icelandic and French can be explained. The problem in contact flow inference is
that these alternative flow paths are not necessarily visible any longer, because
they could actually involve proto-languages, as is the case between Icelandic and
French, which share some lexical material due to their common Indo-European
ancestry. Unless we have other Indo-European languages which form possible
flow paths, 𝐴 and 𝐶 might therefore share some lexical material which cannot
be explained by any path through the network except through 𝐵, but the three
languages still form a collider 𝐴 → 𝐵 ← 𝐶 .
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These considerations give rise to a possibly more robust way of testing un-
shielded triples for v-structures. The question is how to test that 𝑐(𝐴, 𝐵, 𝐶), the
count of cognates shared between all three varieties, is significantly smaller than
the number we would expect under any of the other causal scenarios. To predict
this number, we assume (as before) that when a language borrows lexical mate-
rial from another, it will sample the lexical material to borrow from the donor lan-
guage independently from a different language borrowing from the same donor.
While this assumption might not be warranted in every individual case (e.g., the
name for a newly introduced trade good will often be introduced to many neigh-
boring languages simultaneously), we can still assume this independence of con-
tacts, because there is no obvious mechanism which would coordinate the shape
of linguistic influence between two different pairs of languages across their lexi-
cons. In order to violate the independence assumption, such a mechanism would
have to make it more likely for words in 𝐵 which are already borrowings from 𝐴
to be borrowed further by 𝐶 from 𝐵. On rare occasions, such a preference might
occur if e.g. the loans from 𝐴 fit much better into the phonetic system of 𝐶 , but
this would clearly be an exceptional case that will not be frequent enough to
warrant the costs of foregoing a generally applicable heuristic.

The direct consequence of this independence assumption is that under any of
the three scenarios 𝐴 → 𝐵 → 𝐶 , 𝐴 ← 𝐵 → 𝐶 , and 𝐴 ← 𝐵 ← 𝐶 , the overall
ratio of shared cognates should be roughly equal to the product of the ratio of
shared cognates on each of the two links. For instance, if Turkish borrows 30%
of its vocabulary from Persian, and Albanian borrows 20% of its vocabulary from
Turkish, we would expect 6% of the Albanian lexicon to be of Persian origin. Now
assume that the actual amount of lexical overlap between Albanian and Persian
was determined to be 5%. How can we decide that the observed ratio 𝛿 (5%) is
significantly different from the ̂𝛿 (6%) we derived? There is no obvious way to
model the distribution of either in a way that would provide a reliable statistical
test, and my previous solutions (UFR and TSS directionality inference) both re-
lied on what could be called a local explainability assumption. This assumption
that the local scenario completely explains the overlap pattern in each triangle
was already a problematic assumption before, even though adding some toler-
ance through threshold values turned out to work well enough. In the presence
of latent confounders, however, the local explainability assumption is violated
in most triangles, because in very many cases there will be in overlap due to
relationship between at least two out of the three languages.

Sticking closer to the discrete nature of lexical flow as we conceive of it, it
turns out that under the null hypothesis that some scenario other than 𝐴 →
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𝐵 ← 𝐶 holds, 𝑐(𝐴, 𝐵, 𝐶) should follow a hypergeometric distribution. To see this,
picture the set 𝑐𝑜𝑔(𝐵) as an urn containing all the cognate classes with reflexes
in the language 𝐵. Picture some of these classes as colored in red, namely the
ones shared with 𝐴, i.e. all the members of 𝑐𝑜𝑔(𝐴, 𝐵). From this urn, we now
randomly pick 𝑐(𝐵, 𝐶) cognate sets, and ask the question howmany of these will
be colored red, i.e. have reflexes in 𝐴, to predict the count 𝑐(𝐴, 𝐵, 𝐶) of cognate
classes shared by all three languages. This immediately gives us a significance
test for v-structures, with p-values directly given by the cumulative distribution
function of 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜(𝑐(𝐵), 𝑐(𝐴, 𝐵), 𝑐(𝐵, 𝐶)) at the true value of 𝑐(𝐴, 𝐵, 𝐶).

As an example, take a triple of Russian (rus) and two Siberian minority lan-
guages which are neither related nor have plausibly been in contact, such as
Itelmen (itl) and Selkup (sel). The cognacy overlaps derived from NorthEuraLex
are 𝑐(rus) = 1037, 𝑐(itl,rus) = 68, 𝑐(rus,sel) = 100, and 𝑐(itl,rus,sel) = 27. Will we
reject the null hypothesis that these three languages form a non-collider, i.e. cor-
rectly conclude that they do not form a v-structure itl ◦→ rus ←◦ sel? It turns
out that we can with surprisingly high confidence, as 𝑐ℎ𝑦𝑝𝑒𝑟(27, 68, 969, 100) =
0.9999999999984805, i.e. we would not expect to find an overlap pattern like this
even if we sampled billions of v-structures. It should be obvious that this is a lot
more reliable than building on a separating set criterion.

For an example of a true v-structure, consider another triple of languages con-
sisting of again Russian plus Evenki (evn) and Manchu (mnc). As determined
when discussing the contact languages of Uralic, the true structure here should
be rus → evn ← mnc. On my automatically inferred cognates, the overlaps are
𝑐(evn) = 1224, 𝑐(rus,evn) = 66, 𝑐(evn,mnc) = 134, and 𝑐(rus,evn,mnc) = 2. The
p-value for the hypergeometric test is 𝑐ℎ𝑦𝑝𝑒𝑟(2, 66, 1158, 134) = 0.01745, which
is below any reasonable significance threshold, allowing us to reject any local
causal scenario except the desired v-structure.

In what follows, I will write 𝑣𝑆𝑡𝑟𝑢𝑐𝑡𝑇 𝑒𝑠𝑡(𝐴 → 𝐵 ← 𝐶) for language variables
to express a v-structure check. In the FCI directionality inference variant, this will
denote the usual check in the first separating set that is found. The shorthand
VCI will be used to denote the variant of the algorithm where we check whether
𝑐ℎ𝑦𝑝𝑒𝑟(𝑐(𝐴, 𝐵, 𝐶), 𝑐(𝐴, 𝐵), 𝑐(𝐵) − 𝑐(𝐴, 𝐵), 𝑐(𝐵, 𝐶)) < 0.05, i.e. the v-structure test
developed here at a significance level of 0.05. UFR will continue to be used for
the unique correlate flow check as introduced in the previous chapter.

255



7 Contact lexical flow inference

7.5 Contact Lexical Flow Inference (CLFI)

Algorithm 3 shows the adaptations needed to implement the Contact Lexical
Flow Inference (CLFI) algorithm.The dependency on a tree and an ancestral state
reconstruction method is gone, but the propagation rules have become more nu-
merous.Thismethod can only represent the rough structure of the RFCImethods,
the way in which the skeleton is revised during the propagation stage cannot be
represented in a compact way. The full details of the method need to be taken
from §3.2.4, and the literature quoted there.

Like PLFI, the algorithm starts out with a fully connected graph, and attempts
to find separating sets of increasing size 𝑠. In each iteration for a given size of sep-
arating sets, all links which still exist are sorted by the strength of the remaining
flow, so that the algorithm first tries to remove the weakest links, and proceeds
to the stronger ones later. Depending on the skeleton inference method, separat-
ing set candidates of size 𝑠 for the pair of languages connected by the current
link are formed either from the remaining neighbors of both nodes, or only from
sets of other nodes that form connection paths between the two languages. If a
separating set is found, the current link is removed from the graph. Up to this
point, the algorithm is thus identical to CLFI, except that no reconstructed proto-
languages are added to the dataset, and no predefined links are added based on
the guide tree.

The algorithms mainly differ in the second stage, if directionality inference
methods other than vanilla PC or TSS are used. As explained in Chapter 3, a
successful v-structure test in the FCI algorithm no longer leads to the addition of
fully directed arrows 𝐿𝑖 →𝐿𝑗 ←𝐿𝑘 , but to underspecified arrows 𝐿𝑖 ◦→𝐿𝑗 ←◦ 𝐿𝑘
that can later become either bidirectional or unidirectional arrows. This happens
either through additional successful v-structure tests, or through one of the prop-
agation rulesℛ1 throughℛ10 as described in Chapter 3. The resulting structure
is a contact flow network consisting of both bidirected and directed arcs.

7.6 Evaluation of CLFI

The structure of this section exactly mirrors the order in which PLFI evaluation
was performed in the last chapter. I start by discussing the behavior of the eval-
uation metrics developed there on the contact flow inference problem, and in-
troducing an additional performance measure which captures how well the phy-
logenetic units are separated in the resulting network. Then, I again decide on
one CLFI variant for the case studies by means of global results on the entire
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Algorithm 3 CLFI(𝐿1, … , 𝐿𝑛)
1: skeleton inference method 𝑠𝑘𝑙𝑀 ∈ {𝑃𝐶, 𝐹𝑆}
2: directionality inference method 𝑑𝑖𝑟𝑀 ∈ {𝑉𝑃𝐶, 𝐹𝐶𝐼 , 𝑉𝐶𝐼 , 𝑈 𝐹𝑅, 𝑇𝑆𝑆}
3: ℒ ∶= {𝐿1, … , 𝐿𝑛}, only the input languages
4: 𝐺 ∶= (ℒ, 𝐸) ∶= (ℒ, {{𝐿𝑖 , 𝐿𝑗} | 𝐿𝑖 , 𝐿𝑗 ∈ ℒ ′}), the complete graph
5: 𝑆 ∶ ℒ ×ℒ → ℘(ℒ), the separating set storage
6: 𝑠 ∶= 0
7: while 𝑠 < |ℒ | − 2 do
8: for {𝐿𝑖 , 𝐿𝑗} ∈ 𝐺 by increasing strength of remaining flow do
9: if 𝑠𝑘𝑙𝑀 = 𝑃𝐶 then
10: for each subset 𝑆 ∈ ℘(𝑁 ) for neighbors 𝑁 of 𝐿𝑖 or 𝐿𝑗 do
11: if |𝑆| = 𝑠 and 𝐼 (𝐿𝑖 ; 𝐿𝑗 |𝑆) < 0.025 then
12: remove {𝐿𝑖 , 𝐿𝑗} from 𝐺, 𝑆(𝐿𝑖 , 𝐿𝑗) ∶= 𝑆(𝐿𝑖 , 𝐿𝑗) ∪ {𝑆}
13: end if
14: end for
15: else if 𝑠𝑘𝑙𝑀 = 𝐹𝑆 then
16: for each combination 𝑃1, ..., 𝑃𝑘 of paths from 𝐿𝑖 to 𝐿𝑗 of length ≤ 4 do
17: if |𝑆| = 𝑠 for 𝑆 ∶= ⋃{𝑃1, … , 𝑃𝑘} then
18: if ratio of 𝑐(𝐿𝑖 , 𝐿𝑗) not explainable by flow across 𝑆 is < 0.025 then
19: remove {𝐿𝑖 , 𝐿𝑗} from 𝐺, 𝑆(𝐿𝑖 , 𝐿𝑗) ∶= 𝑆(𝐿𝑖 , 𝐿𝑗) ∪ {𝑆}
20: end if
21: end if
22: end for
23: end if
24: end for
25: 𝑠 ∶= 𝑠 + 1
26: end while
27: if 𝑑𝑖𝑟𝑀 = 𝑇𝑆𝑆 then
28: for {𝐿𝑖 , 𝐿𝑗} ∈ 𝐺 do
29: if 𝑠𝑐(𝐿𝑖 →𝐿𝑗) < 0.72 then
30: add arrow 𝐿𝑖 → 𝐿𝑗 to network
31: end if
32: end for
33: else
34: for 𝐿𝑖 , 𝐿𝑗 , 𝐿𝑘 ∈ ℒ where {𝐿𝑖 , 𝐿𝑗}, {𝐿𝑗 , 𝐿𝑘} ∈ 𝐸 but {𝐿𝑖 , 𝐿𝑘} ∉ 𝐸 do
35: if (𝐿𝑖 → 𝐿𝑗 ← 𝐿𝑘) is a v-structure according to 𝑑𝑖𝑟𝑀 and 𝑆(𝐿𝑖 , 𝐿𝑘) then
36: add arrow 𝐿𝑖 ◦→𝐿𝑗 to network
37: add arrow 𝐿𝑘 ◦→𝐿𝑗 to network
38: end if
39: end for
40: propagate arrows according to ℛ1 to ℛ3 (if 𝑑𝑖𝑟𝑀 = 𝑉𝑃𝐶) or ℛ1 to ℛ10
41: end if
42: return network consisting of 𝐺 and arrows
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NorthEuraLex dataset. The discussion of the case studies refers back to the previ-
ous discussion of PLFI performance in each case study, and mainly discusses the
differences in behavior, instead of going through each of the problems that per-
sist again. The chapter closes with a validation of the findings about the relative
performance of CLFI variants against the simulated data.

7.6.1 Evaluation metrics for contact flow

The results of CLFI can largely be evaluated just like PLFI, given a gold stan-
dard graph over the living languages in the dataset. The only difficult question
is how a gold standard defined in terms of proto-languages can be flattened into
a gold standard on the contact flow level. This ties back to the discussion of the
NorthEuraLex gold standard in Chapter 4, where the question was whether we
should expect each lexical transfer between proto-languages to be represented
as an arrow between one pair of descendant languages in the result.

For contact flow inference, the problem is aggravated by the fact that each
such contact can only be visible as an arrow between descendant languages. One
could certainly argue that ancient influence of e.g. Proto-Iranian on Proto-Uralic
will justify any arrow from an Iranian into a Uralic language, for instance from
Persian into Udmurt. From the viewpoint of arrow evaluation, such an arrow
would be a true positive. The difficult question is whether the absence of such an
arrow also constitutes a false negative. From a local perspective, it is clear that
intensive contact between proto-languages should lead to an overlap, detectable
as caused by contact, between any pair of descendant languages. However, the
lexical flow separation criterion implements a version of Occam’s razor when it
comes to leaving links in the skeleton, typically leaving only one entry point (e.g.
Udmurt) for the borrowed material, and then using the existing network among
related languages to distribute the material to the other Uralic languages. From
the user’s perspective, having a graph that is not cluttered by links between each
pair of Uralic and Iranian languages, but still containing the essential informa-
tion that there was influence of some Iranian on some Uralic language, might
be the better solution, especially if the link connects the two languages where
the contact is most visible, already indicating a good entry point for closer in-
vestigation. Still, relaxing the criterion for false negatives in the skeleton to the
point where, say, any influence from some Indo-European on some Uralic lan-
guage would cover all of the individual contacts we were previously interested
in (Swedish on Finnish vs. German on Estonian, for instance), is certainly not the
way to go for a quantitative evaluation.
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Due to the difficulty in finding a good definition of false negatives, I opted for
the local perspective, counting many false negatives for contacts between proto-
languages that are actually represented in a satisfactory manner.This means that
all the numbers for skeleton recall I will be reporting do not reflect the actual
quality of the networks, although they still fulfill their primary purpose of being
able to compare the performance of CLFI variants.

Finally, there is one additional level on which contact flow networks can be
evaluated. Since this time, we are not putting any phylogenetic information into
the procedure, we can evaluate the result in terms of how well it captures the
phylogenetic signal in the data. Ideally, the contact network should connect all
languages that belong to the same phylum by a subnetwork of bidirected edges
(reflecting the common proto-language as the hidden common cause), while at
the same time, all links across phyla should not involve hidden common causes,
and therefore be monodirectional. This implies a separation of phyla by directed
arcs, and can be quantified by a phylum separation score, simply defined as the per-
centage of pairs of languages where the separation induced by the contact flow
network (connection or non-connection by a path of bidirected edges) agrees
with the separation defined by language family. The phylum separation score
will be used as an additional point of evaluation on the simulated data.

7.6.2 Overall quantitative results for NorthEuraLex data

Again, I start by quantitatively evaluating the flow networks produced by differ-
ent variants of the CLFI algorithm on the entire NorthEuraLex dataset against
the gold standard, and we first consider skeleton and arrow performance sepa-
rately. Table 7.1 compares the skeleton precision and recall. Remember that due
to the way false negatives are counted, the skeleton recall suggests a lot more
information loss than is actually readable from the output. While the differences
between the different methods are much less pronounced than they were for
PLFI, the main trend in these results is clearly in favor of flow separation. In
both cases, the RFCI skeleton is identical or almost identical to the PC skeleton,
indicating that discriminating paths do not form very often in this application if
the checks are performed based on flow separation.

As before, arrow performance can only be measured on the intersection of
links in the inferred skeleton and the gold standard, which will be a smaller or
a larger set depending on skeleton performance. Therefore, arrow performance
cannot be reliably compared across reconstructions and skeleton inference vari-
ants. Still, we can compare the performance of the four directionality inference
methods on the RFCI skeleton. This is done in Table 7.2. We see that vanilla FCI
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Table 7.1: Comparing CLFI variants for contact skeleton performance

Overlap separation Flow separation
VPC FCI VPC FCI

skPrc 0.969 0.961 0.922 0.922
skRec 0.314 0.265 0.407 0.407
skFsc 0.475 0.416 0.565 0.565

Table 7.2: Comparing CLFI variants for arrow performance

Overlap separation
VPC FCI VCI UFR TSS

arPrc 0.150 0.234 0.171 0.231 0.233
arRec 0.400 0.379 0.444 0.512 0.400
arFsc 0.219 0.289 0.247 0.318 0.294

Flow separation
VPC FCI VCI UFR TSS

arPrc 0.113 0.167 0.323 0.309 0.396
arRec 0.138 0.145 0.721 0.691 0.677
arFsc 0.124 0.155 0.446 0.427 0.500

performs very poorly on the better skeleton, clearly motivating the use of more
advanced collider tests. Interestingly, the hypergeometric test with FCI propa-
gation is outperformed by TSS-based directionality inference on both skeletons,
indicating that TSS is a useful general-purpose method that might also be of help
in causal inference on other types of noisy data. Finally, the weakness of UFR, its
dependence on correctly inferred unshielded triples, becomes a strength on the
thinned-out overlap skeleton, where it outperforms all other methods, whereas
it performs worse than VCI on the more dense flow separation skeleton.

Again, the different variants can be ranked by an overall performance score
defined as the product of skeleton and arrow F-scores. The resulting ranking
in Table 7.3, and the higher arrow precision value for the TSS method, suggest
to use the FS-TSS variant for the case studies. Compared to PLFI, the skeleton
precision is slightly better in CLFI, although the mentioned problem with the
counting of false negatives brings the skeleton F-score into regions lower than
the PLFI results. Arrow performance of even the best methods is worse than the
values attained for PLFI by some margin, reflecting that the arrow inference task
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is more difficult without causal sufficiency. As for PLFI, the vanilla variant of
the respective standard algorithm (FCI/VPC) does not work well due to the high
noise level that needs to be compensated by more robust tests.

Table 7.3: CLFI variants ranked by combined F-score on the
NorthEuraLex data

CLFI Variant skFsc arFsc skFsc ∗ arFsc
FS-TSS 0.565 0.500 0.283
FS-VCI 0.565 0.446 0.252
FS-UFR 0.565 0.428 0.242
OS-UFR 0.475 0.318 0.151
OS-TSS 0.475 0.294 0.140
OS-FCI 0.475 0.290 0.137
OS-VPC 0.475 0.219 0.104
OS-VCI 0.416 0.247 0.103
FS-FCI 0.565 0.155 0.088
FS-VPC 0.565 0.124 0.071

7.6.3 Qualitative discussion of NorthEuraLex scenarios

Getting back to the case studies, this time I use the FS-TSS variant of the CLFI
algorithm on the same data, and again visualize the difference to the gold stan-
dard in the form of evaluation graphs, with the same color coding as before. Due
to the false negative issue, we can expect to see many more dotted arrows in
light gray this time, indicating how many links in the skeleton were counted as
missing, and explaining in a visual way how the low skeleton recall values came
about.

7.6.3.1 Case study 1: The Baltic Sea area

Repeating the first experiment on the Baltic Sea data, we see in Figure 7.1 that
most of the contacts which were inferred successfully by PLFI appear in the con-
tact flow network as well. As discussed in the PLFI case study, the problem with
the influence of German on Livonian disappears under the TSS criterion. How-
ever, two other problems have appeared instead.

Firstly, CLFI shares the problem that it is most parsimonious for the model
to explain away the influence of deu on lav by conditioning on liv, such that
Livonian is inferred as acting as an intermediary for the transport of German
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7 Contact lexical flow inference

lexical material into Latvian. This complements the now correctly detected v-
structure pattern deu → liv ← lav, and produces an additional arrow liv →
lav which combines into the erroneous bidirected arrow. Note that Dutch as a
proxy for Low German plays a role here again, this time explaining the West
Germanic loans in Latvian that cannot have traveled via Livonian because they
are not attested there.

Secondly, in measuring the influences between Slavic languages, Belarusian
is seen as influencing Polish instead of either a bidirected arrow representing
common descent, or a directed arrow from Polish into Belarusian as according
to the gold standard. The very strong score ratio of 2.333 in favor of the wrong
direction is mainly due (25.8% of the weight) to an almost perfect fit of the over-
lap between the two languages and Russian to the v-structure bel → pol ←
rus. Here again, working with data at the representation level of cognacy over-
laps shows its weaknesses, as correctly determining the direction of borrowing
between these languages can only be done by looking at the actual word forms,
and analyzing the sound changes.

7.6.3.2 Case study 2: Uralic and contact languages

The overall results of the Uralic case study, visualized in Figure 7.2, are again
quite convincing, especially in terms of phylum separation, with the exception
of Kazakh (kaz), which becomes separated from the other Turkic languages by
erroneous incoming directed arcs, and thewrong bidirected link between Latvian
and Livonian, both of which were already explained in the first case study.

The only major problem with this result is a very interesting cluster of in-
verted arrows into German, which did not appear in the smaller Baltic scenario,
although it included all the involved languages as well. For Danish and German,
the triangles with Swedish and Norwegian are the only two relevant ones, and
the same holds for Norwegian and Danish in reversed roles. The problem now
is that all triples fit the v-structure assumption very well. For instance, for dan
— deu — nor we have a predicted overlap of 471 cognates according to the for-
mula I derived, at an observed overlap of 482. The counterevidence scores for all
triangles are below 0.1, i.e. they all fit the v-structure assumption very well. The
problem is that the scenarios with German at the center tend to fit the v-structure
assumption slightly better, so that we have a small amount of evidence against
deu → dan. The TSS score definition only builds on the ratio of scores, not on
the actual strength of evidence, which leads to a TSS score ratio of 1.8 in favor of
dan → deu. In the Baltic sea scenario, this did not happen because Dutch and
English provided further sources of high-overlap triples counterbalancing this
difference. In general, having more languages in the dataset will always increase
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Figure 7.1: Result and evaluation of contact flow on Baltic Sea data

263



7 Contact lexical flow inference

ba
k

ch
v

ka
z

be
l

po
l

uk
r

bu
l

ro
n

ce
s

kc
a

da
n de
u

ek
k

hu
n

liv

en
f

ni
o

fin

kr
l

ol
o

sm
e

sm
n

hr
v

se
l

ke
t

ko
i

yr
k

kp
v

ud
m

sm
s

ve
p

la
v lit

m
hr

m
df

m
yvm
rj

m
ns

no
r

sm
a

sm
j

sw
e

sl
k

sl
v

ru
s

sj
d

ta
t

ba
k

ch
v

en
f

hu
n

ka
z

ni
o

se
l

ud
m

yr
k

be
l

po
l

uk
r

bu
l

ro
n

ce
s

kc
a

m
hr

da
n de
u

sj
d

sm
a

sm
e

sm
j

sm
n
sm
s

ek
k

liv

fin

kr
l

ol
o

hr
v

ke
t

ko
i

kp
v

ve
p

la
v lit

m
df

m
yvm
rj

m
ns

no
r

sw
e

sl
k

sl
v

ru
s

ta
t

Fi
gu

re
7.
2:

R
es
ul
ta

nd
ev

al
ua

ti
on

of
co

nt
ac

tfl
ow

on
U
ra
lic

da
ta

264



7.6 Evaluation of CLFI

the stability of TSS, because there are more weighty triples to factor in.The fewer
high-weight triangles are available for a language pair, the more unstable the TSS
decision will be. We are going to see this effect very strongly in the Siberian case
study.

Apart from this cluster of inverted arrows, the inferred contact flow network
does not have any serious problems. The empty green arrows in the evaluation
graphmight serve to highlight a general difficulty of contact flow inference, how-
ever. To explain why so much spurious family-internal directionality is inferred,
let us consider the Saami languages. Like the other Western Saami languages,
Northern Saami (sme) has loans from Norwegian, but virtually all of these also
exist in the smaller Saami languages that have been in even closer contact with
Scandinavian languages. This means that it is most parsimonious for the model
to explain away the connection from sme to nor by conditioning on sma and smj.
Locally, this causes the two languages to look like mixtures of their more easterly
relatives with Norwegian, leading to directional arrows from sme and smn into
sma and smj.

7.6.3.3 Case study 3: The linguistic landscape of Siberia

In this scenario, the results of CLFI are actually worse than those of PLFI. As
the results in Figure 7.3 show, the star-shaped influence of Russian on various
minority languages is not recognized any more, in most cases leading to bidirec-
tional arcs. This is again due to a lack of high-overlap triples involving the links
in question. In the global NorthEuraLex network, the star pattern was inferred
just as intended, because there were other Slavic languages in the dataset which
could serve to form high-overlap triples involving Russian. To see even more
clearly how this problem is ingrained in the mechanics of TSS computation, let
us take a look at some details behind the pair rus — sah. The following third
languages contribute the most to the triangle score sum: Kazakh (30.3%), Itelmen
(12%), Buryat and Kalmyk (at 6.7% each). We only have |𝑐𝑜𝑔(rus,sah,kaz)| = 7,
against an overlap of 3.74 predicted for rus → sah ← kaz, and 13.36 for sah
→ rus ← kaz. The fit of both predictions with the true overlap is thus about
equal. This pattern repeats for the other triangles, so that the score ratio reaches
only 1.029, a signal which is weaker than any reasonable threshold. For other
minority languages, the pattern repeats itself, even if some pairs like rus → ykg
(TSS ratio 1.357) are much closer to the threshold. So why did everything work
much better in the larger scenarios? The reason is that any additional Slavic lan-
guage such as Ukrainian will provide a high-overlap unshielded triple ukr — rus
— sah, because Russian will screen off the Russian minority languages from ukr
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7.6 Evaluation of CLFI

during skeleton inference. The TSS criterion yields very high evidence against
this being a v-structure, which tips the balance in favor of arrows going out of
Russian for all languages Russian separates from Ukrainian. To summarize, TSS
helps to aggregate and weight evidence from different triples, but in the absence
of unshielded triples creating strong directional signals, TSS will be unstable or
inconclusive. Using a pairwise score like TSS does not provide a means to over-
come the theoretical results about causal inference, which tell us that unshielded
triples are needed to securely establish the direction of causality.

A further interesting phenomenon is displayed by the two-member Chukotko-
Kamchatkan family. Itelmen (itl), the language whose lexicon was influenced
much more strongly by Russian, is inferred to have been the intermediary for
transmitting the Russian loans into Chukchi (ckt), yielding a directional signal
between the two related languages. This is a problem that is especially virulent
in small language families, which is why we have not yet seen it in the other case
studies. The wrong internal structure of Tungusic is also created by evn as the
obvious entry point for all the Russian loans, which then get transmitted within
the family on the path evn → gld → mnc, although this effect is not strong
enough to yield a directional signal above the threshold.

Finally, failure to recognize the directionality of contacts between Chinese,
Japanese, and Korean is again due to the absence of high-overlap triples that
would yield directional information. The most relevant triple for all connections
between these three isolates (in our study) is the one formed by the three lan-
guages. But the three-way overlap between the three languages is only very small
at |𝑐𝑜𝑔(cmn,jpn,kor)| = 14, showing that the expected problems with recognizing
Chinese loans based on Mandarin Chinese have indeed materialized. In this tri-
angle, there is not enough room for different directions to vastly differ in the fit
of their prediction to the true overlap size, leading to hints of equal strength in
every direction. In general, lexical flow inference will always run into problems
when isolates are involved, and we can only expect it to work well if both lan-
guages connected by the link of interest have close relatives in the dataset.This is
the reason why contact flow inference worked so much better on the Baltic Sea
and Uralic test sets (where larger families meet) than in isolate-ridden Siberia,
where even the colonial language is an isolate in our dataset.

7.6.3.4 Case study 4: A visit to the Caucasus

In the results of the Caucasian case study visualized in Figure 7.4, it turns out that
the absence of a proto-language does not help us prevent the erroneous arrow
from Uzbek into Persian. The reason is that all the triangles formed from two
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Figure 7.4: Result and evaluation of contact flow on Caucasian data
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Turkic languages plus Persian look very much like v-structures according to the
predicted overlaps. This is not an issue of data sparseness as in previous cases,
because the three-way overlap for such triples will typically exceed 60 cognates.
Instead, the problem now is the very high overlap between the Turkic languages,
which would lead to a three-way overlap of the predicted size even if the true
story were a v-structure. This is an instance of one of the cases where the TSS
criterion is inadequate.

The second interesting question in this case study is why Arabic, which was
correctly established to be a major external source of lexical material for the
region in UFR-based PLFI, is a source of problems for TSS-based CLFI. Again
looking at the TSS score ratios first, we find that the main problem is the triple
of Persian, Arabic, and Pashto, with an overlap of |𝑐𝑜𝑔(arb,pes,pbu)| = 70 which
does not fit the story arb → pbu → pes. The problem here is the assumption of
independent sampling.The Arabic loans in Persian and Pashto overlap a lot more
than the assumption of independent contacts would suggest, because they are
concentrated in the religious and scientific vocabulary. This non-collider signal
counteracts the collider signals coming from triples such as arb — pes — kmr.
To alleviate this type of problem, one would need a much more explicit flow
model which would model the flow beyond the local configuration, enforcing the
constraint that there must be a directed path between any pair of languages that
share a substantial marker of cognates, and take this into consideration when
making local directionality decisions. Unfortunately, it is highly unlikely that
inference in such a flow model would be tractable at the scale at which I am
operating.

7.6.4 Evaluation on simulated data

As the final part of this chapter, I again check whether we can reproduce our find-
ings about the relative performance of different CLFI variants on the simulated
data. This time, a little more thought than before must go into the definition of
the gold standard.

7.6.4.1 True and detectable histories

For NorthEuraLex, the inclusion of a contact link into the gold standard presup-
posed the existence of a discernable layer of loans in the attested part of the
language. While this was sometimes difficult to assess based on the available lit-
erature, it still provided an external way of getting at the desired information,
and the resulting evolutionary network was already relatively flat similar to a
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7 Contact lexical flow inference

contact flow network, because ancient contacts are less clearly known, and less
frequently discussed in general descriptions of individual languages.

The main issue in generating such gold standard graphs for the simulated sce-
narios can be conceptualized as the difference between true and detectable his-
tories. The true history is what actually happened during the simulation, includ-
ing contacts with substrate languages, i.e. languages without living descendants
about whose existence we can only know due to loanwords they left in attested
languages. This makes the true history easy to define based on the simulation
trace.

In contrast, the detectable history is only a subset of the events contained in the
true history, informally defined as containing all the events of which some trace
is still visible in the cognate data for living languages. By means of the detailed
protocol of the complete history for each simulated scenario, the visibility of each
event can be determined exactly by checking whether it is part of any word trace
leading to a cognacy relation in the input data.

7.6.4.2 Summarizing generated contact histories

A true history gold standard will simply contain every contact link through
which more than 25 lexical items were transmitted (based on 1,000 simulated
concepts, and our CMI threshold of 0.025). However, expecting CLFI to infer this
true history will not lead to a fair assessment of the system’s performance. In-
stead, we need a gold standard that is comparable in difficulty to the equivalent
task on the NorthEuraLex data. In other words, we need a way to extract a pic-
ture of the history of the linguistic region from the simulation protocols that
is roughly comparable in shape and abstraction level to the NorthEuraLex gold
standard.

This leads me to the following solution for generating gold standard graphs
for the simulated data: Exploiting the existing infrastructure for tracing the his-
tory of every attested word (the detectable history), we consider each pair of
languages in turn, and count the number of current words that were once bor-
rowed from one language or one of its ancestors to the other language or one
of its ancestors, stopping once we meet the lowest common ancestor of both
languages. After discarding borrowing events which took place within the same
cognate class, we arrive at a total number of transferred items in both directions,
and put the appropriate arrow into the gold standard network if the number of
borrowings in the respective direction exceeds 10 lexical items.
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7.6.4.3 Results

Again, we start with the skeleton performance data in Table 7.4. The skeleton
recall numbers are globally much better than on the NorthEuraLex data, and the
differences between the different separation methods are again rather small, es-
pecially the difference between PC and FCI skeletons. Since the simulated gold
standards based on detectable histories are defined in a muchmore objective way
than theNorthEuraLex gold standard, the difference in recall suggests that a large
portion of the contacts postulated by the NorthEuraLex data might not actually
be detectable from the data, and that quite a few links, especially those reflect-
ing very ancient contacts, should be removed from the gold standard. Apart from
this difference, the small divergences in performance between skeleton inference
methods show a very similar pattern as on the NorthEuraLex data, although this
time, FCI consistently performs better than the vanilla PC algorithm. This differ-
ence once more illustrates that FCI can only play out its strengths on very clean
datasets such as my simulated data, whereas it appears very prone to be affected
by the type of noise seen in automatically inferred cognacy overlap data.

Table 7.4: Comparing CLFI skeleton performance on simulated data

Overlap separation Flow separation
VPC FCI VPC FCI

skPrc 0.966 0.963 0.933 0.934
skRec 0.559 0.621 0.740 0.750
skFsc 0.708 0.755 0.825 0.832

The numbers for arrow performance in Table 7.5 show that as in PLFI, the
vanilla variant of causal inference fares a lot better on simulated data than on
NorthEuraLex, very likely again due to the absence of noise, as opposed to the
relatively high level of noise resulting from automated cognate clustering. Also,
the FCI and VCI methods show some promise on the simulated data, whereas
FCI was almost useless on NorthEuraLex. This is different from our observations
when evaluating PLFI on simulated data, where the TSS directionality influence
was clearly the best. The reason for this might be that the theory behind TSS was
not adapted to the possible presence of hidden common causes. In comparison
to PLFI, the arrow F-scores of the best method are a bit worse. The best arrow
F-score on the MLmlt reconstruction was reached by the TSS method at 0.447,
whereas we are now at 0.407 with the FS-VCI variant.
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Table 7.5: Comparing CLFI arrow performance on simulated data

Overlap separation
VPC FCI VCI UFR TSS

arPrc 0.366 0.529 0.366 0.405 0.434
arRec 0.486 0.452 0.486 0.409 0.513
arFsc 0.417 0.488 0.417 0.407 0.470

Flow separation
VPC FCI VCI UFR TSS

arPrc 0.272 0.283 0.405 0.256 0.325
arRec 0.452 0.404 0.409 0.516 0.504
arFsc 0.339 0.332 0.407 0.342 0.395

Table 7.6: CLFI variants ranked by combined F-score on the simulated
data

CLFI Variant simulated NELex difference rank on NELex phyloSep
OS-FCI 0.368 0.137 -0.231 6 0.714
OS-TSS 0.355 0.140 -0.215 5 0.737
FS-TSS 0.329 0.283 -0.046 1 0.783
OS-VPC 0.315 0.104 -0.211 7 0.711
OS-VCI 0.315 0.103 -0.212 8 0.711
FS-VCI 0.288 0.252 -0.036 2 0.738
OS-UFR 0.288 0.151 -0.137 4 0.738
FS-FCI 0.283 0.088 -0.195 9 0.642
FS-UFR 0.282 0.242 -0.040 3 0.723
FS-VPC 0.282 0.071 -0.211 10 0.673

Next, Table 7.6 ranks all the variants of CLFI according to their combined per-
formance score on the simulated data. It is interesting that the performance on
NorthEuraLex data is quite consistently much worse than on the simulated data,
although as for PLFI, the combination of flow separation with the more robust
VCI, TSS and UFR methods does not suffer as much from this. Unlike for CLFI,
very different methods end up in the top ranks on simulated and NorthEuraLex
data, with only the FS-TSS method staying in one of the top positions across
data types. This seems to indicate that the way in which the gold standard was
extracted from the simulated data might not be the perfect choice.
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Although it is not the best-performing method on the simulated data, FS-TSS
is clearly the best method according to the phylum separation measure. Sepa-
rating the phyla appears not only to work well in selected example scenarios
(such as the Baltic and Uralic case studies), but also across 50 sometimes rather
challenging simulated scenarios. This shows that FS-TSS might be a useful tool
for discerning different language families in situations which at first sight look
rather chaotic.

Summing up the results of CLFI, we have seen in the case studies that while the
problems previously caused by reconstruction have disappeared, the reliability
of v-structure tests appears to have dropped in comparison with PLFI. This is
perhaps not too surprising, as only the phylogenetic lexical flow paradigm has
clear instances of the lexicon of one language being in a very literal sense a
mixture of words from other languages. In contrast, contact flow is frequently
faced with situations where parts of the overlaps in the triple are actually due
to common inheritance, leading to much more unpredictable overlap patterns,
and hence to lower performance of v-structure tests. Still, the overall quality of
CLFI results was quite comparable with PLFI, giving us another tool for data
exploration that also performs quite well at phylum separation.
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8 Conclusion and outlook

In this final chapter, I review the results of all the previous chapters, putting
some of them into new contexts, and assessing their relationship to the current
state of the field. Then, there is a longer section about possible future work build-
ing on my results. No research project of any scale is complete without having
opened some new avenues for further research, and this book is certainly no
exception. For the immediate future, there are many possible improvements to
explore, and many steps to take in order to make the new software tools accessi-
ble to the wider community of historical linguists who are open to experimenting
with computational methods. I therefore describe my current plans about future
improvements to data and software, and list my ideas for continuing research
in the area of applying causal inference on the level of entire languages. These
ideas revolve around possible ways of assigning confidence values to arcs in lexi-
cal flow networks, and howmore fine-grained methods of estimating conditional
mutual information could lead to future improvements. I then comment on the
possible place of lexical flow algorithms in the landscape of tools for computa-
tional historical linguistics, and a few final remarks express my personal opinion
about where the field of computational historical linguistics is headed, andwhich
parts of the uncharted research landscape seem most in need of exploration and
development.

8.1 Summary

I start by revisiting all chapters of this book, and informally summarizing the new
methods and findings that can be found in each of them. After the introductory
chapters revisiting the current state of the fields of computational historical lin-
guistics and of causal inference, Chapter 4 describes the basic infrastructure that
I implemented to get from paper dictionaries via raw phoneme sequences for the
NorthEuraLex database to cognacy overlap data for most written languages of
Northern Eurasia. While adapting and evaluating relatively standard techniques
for most subtasks (sound correspondence detection, clustering cognates based
on a string distance matrix), the chapter also includes some small innovations.
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The most important one is probably information-weighted segment alignment
(IWSA), a new alignment method which not only uses sound correspondences
to infer lower distance values between cognatewords from related languages, but
adds an additional weighting by the information content of each segment accord-
ing to a gappy trigram model. This model automatically disregards frequently
occurring morphological material such as infinitive endings when computing
phoneme sequence distances by alignment, doing away with the need for stem-
ming when working with dictionary data. The last sections of the chapter justify
the decisions behind my gold standard of detectable language contact events in
four subareas of Northern Eurasia, representing very different linguistic situa-
tions – from intense but monodirectional contact between two large language
families (the Baltic sea area) to a chaotic situation with several interacting in-
digenous families influenced from the outside by imperial languages from four
different families (the Caucasus).

Chapter 5 then presents a new simulation model for generating realistic cog-
nate overlap testsets for entire linguistic regions, with up to ten language fam-
ilies interacting on an irregularly shaped continent, spawning new languages
that spread to a limited number of locations. Language extinction is modeled as
only occurring if a neighboring language splits and expands into an area previ-
ously occupied by another language, which then becomes extinct. I show that
50 random scenarios generated by the model are structurally very similar to
the NorthEuraLex dataset, agreeing with the real data in many measures of tree
structure, cognate set geometry, and word age distribution. These findings make
the datasets generated by the model a valuable resource for other research in
computational phylogenetics, but especially for evaluating lexical flow inference
algorithms like the ones introduced in this book.

The starting point of Chapter 6 was the question how a cognacy-encoded
dataset can be used to define a consistent conditional mutual information mea-
sure on sets of languages, providing a mathematical model in which similarities
of two languages in the form of lexical overlap can be explained away by the
influence of other languages. In the causal inference framework, conditional in-
dependence tests can be used to answer the question which lateral connections
need to be assumed in addition to a given phylogenetic tree to explain how the
lexical material covering some set of concepts in a given set of languages ended
up in the observable configuration. The coarse-grained nature of cognacy data
posed considerable challenges to applying the causal inference paradigm, but a
combination of new scoring methods based on the lexical flow metaphor was
found to be sufficient for capturing a large number of horizontal connections.
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With the causal skeleton in place, the idea of detecting colliders (i.e. places where
the lexicon of one language looks like a mixture of two other languages), and dis-
tinguishing them from other contact patterns, provides a directional signal for
most lateral connections. The resulting directed graph can be interpreted as de-
picting the process by which the observable languages were generated from a
small set of proto-languages. In the phylogenetic flow model explored in this
chapter, the common ancestors of observed languages had to be modeled ex-
plicitly by some initial phylogenetic theory, and by reconstructing the ancestral
states. Experiments on the simulated data confirmed that maximum-likelihood
methods for ancestral state reconstruction are superior to other approaches, but
also showed the limited reconstructability of contacts between proto-languages.
While contacts between observable languages were inferred with sufficient reli-
ability, signals between reconstructed proto-languages turned out to be unstable
against different reconstruction strategies.

Informed by these problems, Chapter 7 explored the alternative approach of
not trying to infer historical contacts, but a network which indirectly models
the presence of hidden common causes in the form of common proto-languages.
Such contact flow networks constitute another new way of summarizing and vi-
sualizing cognacy data. They provide a clear display of directional signal in the
contacts, while not displaying ancestral links on an equal footing, which could
cause the interpreter of a phylogenetic flow network to assume that such knowl-
edge could be inferred just as reliably as lexical flow between living languages.
In terms of causal inference, the presence of hidden common causes implies we
can no longer assume causal sufficiency, which creates a need for one of the
variants of the more complex FCI algorithm to be applied. Again, a specialized
technique for detecting collider patterns was necessary to achieve acceptable
performance, but the resulting networks turned out to contain less severe errors
than the results of phylogenetic lexical flow inference. In addition, the best com-
bination of heuristics turned out to lead to networks in which languages with
a common ancestor are very likely connected by a chain of bidirectional arcs,
whereas languages whose only cognate overlaps are due to contact are linked by
monodirectional arcs, very often pointing in the correct direction.

8.2 Future work

To address the most important issue first, lexical flow inference remains in a
somewhat unsatisfying position from a philosophical point of view. While lexi-
cal flow arguably provides amuchmore accurate picture of the forces shaping the
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lexicons of languages than mathematically simpler models such as phylogenetic
trees or galled networks, applying themethod to available data still requires some
very crude simplifying assumptions to be mathematically tractable, and to lead
to satisfactory results. The resulting approach is neither fully empirical, nor fully
grounded in linguistic theory. While this general problem concerns many subar-
eas of computational linguistics due to the very complex nature of languages as
systems, in the present case this problem is exacerbated by the discrete nature
of the underlying data and the rather high noise levels. These problems forced
a framework which started out motivated by a well-developed and attractive
mathematical theory to undergo so many modifications that it ultimately shifted
towards a heuristic method that is mainly of interest for initial data exploration.

The lack of secure mathematical underpinnings is not a severe problem for an
exploratory tool which can be used to quickly detect points of interest and to
generate hypotheses which can later be tested using traditional methods. How-
ever, it detracts from the method’s value as a potential way of arriving at reliable
new knowledge. As few errors as the methods might make when disentangling
the interactions between two language families in contact, the knowledge that it
will make some mistakes means that we cannot expect the method to provide us
with definitive answers to open questions about historical language contacts.

In principle, this is a problem haunting all mathematical methods, but in con-
trast to fully probabilistic evolutionary network models, there is currently no
good way to quantify the uncertainty inherent in the results of lexical flow in-
ference. What would already be possible using the current implementation is an
ensemble-based approach, as I have already hinted at in several places during
the discussion of results for the case studies. Such an approach would perform
a selection of different variants of PLFI or CLFI, such as FS-UFR and FS-TSS,
and only include in the output structure the directional arrows that all variants
agreed on. This could be exploited for a massive increase in precision at the cost
of recall, and would therefore allow the linguist user to be much more confident
of the results on their lexical dataset.

The next step will be to improve the mathematical underpinnings of the cur-
rent approach by systematically exploring the possibilities ofmoving fromheuris-
tics and threshold values to sampling and statistical testing. One of the first steps
would be to replace the threshold value currently used for conditional indepen-
dence tests by an actual statistical test for vanishing conditional mutual informa-
tion. Such a test will require deriving the distribution of overlap patterns under
the null hypothesis, using more complex arguments of the type which led to my
derivation of the hypergeometric distribution of overlaps for the v-structure test
in Chapter 7.
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A first simple approach to quantifiable uncertainty will very likely be based
on resampling methods. If we run PLFI or CLFI a thousand times on bootstrap
resamples of the cognacy data, we can derive an empirical joint distribution over
variables representing the presence and directionality of each link, which could
be marginalized to provide us with confidence values for each link. Due to the
generality of graph models, this procedure would be conceptually simpler than
the techniques by which consensus trees are inferred from samples of the pos-
terior distribution in Bayesian phylogenetic tree inference. On the other hand,
the resulting graphs will likely be much denser, and less easy to interpret, than
consensus trees, because contradictory signals would simply lead to a prolifera-
tion of low-confidence links. Rerunning PLFI thousands of times on problems of
the size of my case studies could be performed in a few days thanks to the short
running time for each analysis, and due to the possibility of performing multiple
runs in parallel.

The ultimate goal would of course be a comprehensive Bayesian approach to
PLFI and CLFI inspired by the current state of the art in tree inference, which
would also model the uncertainty inherent in all results of the pre-processing
stages such as detecting cognates, and projecting cognate sets back in time to
the proto-languages. First steps in this direction will likely be inspired by the
model presented by Murawaki & Yamauchi (2018) for typological data. Their au-
tologistic model jointly infers the contribution of vertical stability, horizontal
diffusibility and universality to observable typological feature distributions, all
of which have obvious parallels in the lexical flow inference task. Even though
Murawaki and Yamauchi emphasize the differences from lexical data, which they
perceive to be much less characterized by uncertainty, their focus on overcoming
the problems posed by uncertainty and missing values in typological data makes
their work very interesting for automatically inferred cognacy data, which are ar-
guably just as uncertain as typological features. Despite all these promising ideas,
given the small number of languages for which existing fully probabilistic evo-
lutionary network approaches are still tractable, and the very long convergence
times of Bayesian inference even for the much simpler problem of phylogenetic
tree inference, it appears highly unlikely for such a comprehensive approach to
scale to hundreds of languages in the near future.

In parallel to these endeavors, I am going to revisit other possibilities for con-
ditional independence tests over basic vocabularies, with the goal of extracting
an additional meaningful signal beyond pure cognacy from the form differences
within each cognacy class. Such tests have the potential to be bothmore sensitive
and more reliable than the current coarse-grained measure of conditional mu-
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tual information. In this context, it will also be worthwhile to explore neural ap-
proaches, letting the computer decide which features and feature combinations
are relevant for classifying sets of languages as independent. This would also
make it possible for lexical flow inference to benefit from the recent advances
in distributed representations. The input for such methods could consist of a
mixture of cognacy data and information-weighted form distances, but adding
bag-of-sounds representations or even sets of positional phonetic features would
very likely be worth exploring as well.

For all of these future directions of research, large amounts of high-quality
training and test data will be of immense help. As mentioned in Chapter 4, the
NorthEuraLex project is currently going through its second phase, with the pur-
pose of adding not only another 89 languages, but also an etymological annota-
tion layer based on the most recent etymological dictionaries of the larger fam-
ilies. Etymological coverage will inevitably remain incomplete even if it eventu-
ally evolves to model most of the available literature, but even a partial loanword
annotation will provide an avenue to evaluating not only the existence of links
in lexical flow networks, but also their weights. For this, the evaluation would
likely be defined on the level of individual loans, counting how many loanwords
were correctly detected as such, and whether the source language was inferred
correctly. In a first step, the same analysis could already be performed on the sim-
ulated data in the near future, because here the ground truth of each etymology
is known by design.

In the immediate future, the most pressing task is to refine the released soft-
ware in such a way that it allows other linguists to experiment with PLFI and
CLFI on their own datasets.The current version is still a typical piece of academic
software, with all that entails in terms of sparse documentation, suboptimal er-
ror handling, and lacking introductory materials which could provide an entry
point for novice users. While these issues are in the process of being addressed,
the software is already released under the GPL in a Github repository1, allowing
other researchers to explore the potential of causal inference on language data
from an advanced starting point.

It would also be very interesting to simply apply the existing infrastructure
to the many small cognacy-encoded datasets that are currently in development,
perhaps helping scholars doing research on an underexplored language family
to come up with a good first idea of possible contact signals hidden in their data.
My intuition is that the ability to infer a phylogenetic network (albeit with a few
errors) within hours, could be an attractive prospect for such scholars, but this
intuition remains to be tested and substantiated.

1https://github.com/jdellert/lexflow
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Of course, once they have reached some level of maturity, lexical flow infer-
ence methods should be compared against future more probabilistic evolution-
ary network models, especially as soon as those are performant enough to tackle
problems of the size we have been dealing with in this book. It will also be inter-
esting to investigate how much of the signal is lost when using one of the more
limited network types, thereby assessing whether the high generality of lexical
flow networks is actually an advantage for finding the relevant contact patterns.
All of these comparisons should also be performed on large amounts of simu-
lated data as generated by my model, which could perhaps be further improved
by tuning the currently fixed replacement rate to a development set.

Finally, coming to the question of what could be improved about the various
pre-processing steps in order to maximize the potential of lexical flow inference,
the top item on the list would be further progress in automated cognate detec-
tion. While ancestral state reconstruction might not improve much beyond the
current state as it is unclear where additional information might come from, I
am quite certain that cognacy detection could be much improved with the help
of hitherto underused signals in the data. Better models of conditional sound
changes and other important parts of the comparative method are certainly a
worthwhile direction for future efforts, and lexical flow inference methods will
immediately benefit from any advances in this field. In my view, the main reason
why the field has not yet movedmuch beyond PMI-based sound correspondences
has been the small amount of freely available lexical data with full phonetic en-
coding, a problem which has started to be addressed only fairly recently. It is
likely that NorthEuraLex will be able to serve as a valuable resource in the devel-
opment of such models.

8.3 Final remarks

The main contribution of my work to the field of computational historical lin-
guistics could be summarized as follows: it provides a previously unexplored
framework for evolutionary network inference from lexical data, managing to
produce very general networks for problems of unprecedented size at acceptable
error rates. The high performance of the method currently comes at the expense
of knowledge about the uncertainty inherent in every part of the result, making
it more of an exploratory tool than a possible source of proofs about historical
language contacts and relationships.

One might perhaps have expected more in light of the very attractive theory
behind the causal inference paradigm. This theory tells us that under certain
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assumptions, causal inference will provide us with objectively true statements
about the causal relationships between statistical variables. In reality, the prob-
lem is that many of these assumptions, such as the reliability of higher-order con-
ditional independence tests, typically do not hold, often not even approximately.
Causal inference is therefore a lot more difficult to apply to a new problem than
the attractive mathematical paradigm would suggest. It took a lot of effort to
overcome the difficulties caused by violating the assumptions, and yet we end
up with a result about the truths of which no guarantee can be given. Arguably,
this is also the case for other types of reasoning, such as the traditional way ar-
guments are made in historical linguistics. Still, human reasoners are much more
flexible in the types of knowledge they can take into consideration, and they can
actually come close to the ideal of considering all the available data that can be
brought to bear on a specific question, such as the question whether Korean and
Japanese are related by inheritance. No piece of evidence is “out of scope” in the
workflow of historical linguistics, and a single new bit of knowledge can take all
plausibility from an entire theory.

From the perspective of many historical linguists, the trend towards answer-
ing such questions based on simulation models and probabilistic methods con-
tributes to a tendency to reduce the types and scope of evidence from which con-
clusions are drawn. This reductionism can be seen as a symptom of an ongoing
perhaps unhealthy mathematization of the field. Databases make it easy to ab-
stract over all the minute details which scholars so painstakingly collected over
the past centuries, and to instead put one’s time and trust into the refinement
of mathematical models with the purpose of answering very general questions.
The availability of large databases does not necessarily bring about advances in
terms of the questions the field was previously interested in, but instead causes
a shift in the focus of the field towards those questions which can be answered
by statistical analysis of such data, even if the connection to the open questions
of the field is tenuous at best. In their very critical assessment of existing math-
ematical approaches to historical linguistics, Pereltsvaig & Lewis (2015) describe
recent developments within the field of geography as a cautionary example. In
geography, this has led to a focus on statistical phenomena such as the distri-
butions of city sizes across the world, and away from the development of tools
which would allow us to understand in a very specific case how a certain city
developed compared to a neighboring city, and for which reasons. If this grand-
scheme mentality is combined with glossing over disturbing facts as one would
treat measurement errors in physics, mathematical modeling turns into a poten-
tially unhealthy trend, which might cause many sciences to confine themselves
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to continually redigesting noisy databases in order to explore this type of very
general and abstract questions. A similar trend can already be observed in com-
putational historical linguistics, where the most widely read (and cited) papers
make very general claims about languages evolving in bursts (Atkinson et al.
2008), or universals of the human lexicon (Youn et al. 2016). While such results
are certainly interesting in their own right, mathematical methods have so far
contributed surprisingly little to answering the very complicated questions of
detail that are involved in proving language relationship. Publications which ex-
plore phylogenetic networks as a means to shed more light on the history of a
single language family or historical region, which are much closer to what his-
torical linguists are interested in, seem much less attractive to the computational
community. But the existing computational work that tries to answer the old
questions that the comparative method was not able to solve conclusively, will
not be readily accepted by the historical linguistics community as long as wrong
partial results are treated as mere flukes that will not have an impact on the truth
of the final result. Strong claims are derived from a mere two hundred words per
language, although there are good reasons why historical linguistics has always
built on the entire documented lexicon of the relevant languages, alongwithmor-
phological and typological features that are beyond the scope of this book. In my
view, statistical methods, especially the state-of-the-art methods operating in a
Bayesian paradigm, could nevertheless gain wide acceptance if they incorporate
much more of the available knowledge, as is generally considered good practice
among Bayesian statisticians. Just as in other fields where statistics has been ap-
plied much longer, leaving out knowledge that would be available to form more
informed priors should be considered problematic, and wider coverage of the
available knowledge is where the focus of further developments in phylogenetic
methods should lie.

The best-performingmethods for automating parts of the comparative method
display another set of very common problems. As algorithms get more complex,
and are typically trained on gold standard data through machine learning, they
turn more and more into black boxes, thus called because internal calculations
become impossible to interpret for humans. For such systems, it must typically
remain unclear whether they really capture some linguistically interpretable sig-
nal, or are actually trained to rely on much cruder criteria, as has frequently been
the case in the history of machine learning. In my view, much of the problem is
caused by the standardized ways in which tools are commonly evaluated in com-
putational linguistics. For instance, methods for automated cognate detection
are commonly evaluated only against a selection of test sets covering a single
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language family each. This means that there is a very high prior probability for
words of the same meaning that sound vaguely familiar to be cognates. A system
trained on this type of input will typically produce many false positives when ap-
plied to a dataset which spans several language families. Moreover, the focus on
attaining ever higher F-scores loses some of its appeal when one becomes aware
of the fact that this measure is dominated by the easier cases (cognacy among
close siblings), hiding the fact that performance for the difficult cases (cognacy
detection across subfamilies) is still a long shot from what human linguists can
achieve based on the classical methods.

Partly due to these problems, the future role I see for mathematical models and
computational tools in historical linguistics is less in fully computational theo-
ries, but more in the paradigm of machine-assisted theory development. Concep-
tually, a toolbox for machine-assisted historical linguistics would largely auto-
mate simple tasks such as dictionary lookup, applying postulated sound changes,
phonetic pattern matching to find additional cognates, and finding the optimal
sequence of conditional replacement rules, while still relying on human intuition
and curiosity to make the high-level decisions, and to receive heuristic hints on
which variants to explore next. The human linguist would be able to manipulate
parts of the system’s initial output at will, e.g. to reject an automatically gener-
ated sound law, mark a word that the system was uncertain about as an obvious
borrowing, or expand a cognate set proposed by the systemwith additional forms
which the imperfect automated cognate detection component missed. This inter-
action of course requires the system output to be framed in terms that a historical
linguist is used to thinking in. The feedback would then be used by the system
in its next round of automated theory refinement, changing bits of the model to
accomodate the linguist’s ideas, re-applying the model to the parts of the data
the analyses of which the user has not yet declared final, and then displaying the
results back to the user. This basic feedback loop would potentially lead to much
accelerated development of etymological theories, because the human linguist
could feed the system with ideas that it found impossible to generate on its own,
whereas the computer could tell the human linguist in an instant whether e.g.
their new idea for a reconstructed form covers all attested reflexes, and direct
their attention to potential unresolved problems. The resulting fully specified
theory (including all the decisions that were manually enforced or confirmed by
the linguist) could then be shared in a digital format, which would allow other
linguists to load the theory into their copies of the system, configuring it accord-
ing to their knowledge, and inspecting the resulting changes to the automated
analysis.
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I have recently been given the chance to take the first steps towards build-
ing a prototype of such a system. The planned Etymological Inference Engine
(EtInEn) will be built on Probabilistic Soft Logic (PSL), a recent framework for
relational learning which allows to combine inviolable constraints (which I am
using to implement the core logic of the comparative method) with weighted
rules (which will allow modeling the heuristic rules which are commonly used
when the logic does not yield results). The final system will be built around a
backbone of a database of elementary assumptions connected by PSL constraints
and rules, which will be used as a common interface to transmit information be-
tween a variety of specialized reasoning components. Many smaller parts of the
infrastructure developed during the research leading up to this book could be
turned into such components. Information-weighted sequence alignment will
help in automatically finding good candidates for cognates that no longer over-
lap in meaning due to semantic shifts. NorthEuraLex, covering a large number
of well-researched languages, will provide the starting point for a very rich and
accessible testset to play around with. Finally, PLFI and CLFI will find their place
among many other tools as a quick way to generate a unique view on a dataset,
helping to isolate the contacts which minimally need to be assumed to explain
the shared lexical material, and coming up with a good starting hypothesis for
this much quicker than a committee of human linguists could.
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Appendix A: NorthEuraLex and the
gold standard

A.1 Languages in NorthEuraLex 0.9

Family Branch Language ISO 639-3
Uralic Finnic Finnish fin

North Karelian krl
Olonets Karelian olo
Veps vep
Estonian ekk
Livonian liv

Saami Southern Saami sma
Lule Saami smj
Northern Saami sme
Inari Saami smn
Skolt Saami sms
Kildin Saami sjd

Mari Hill Mari mrj
Meadow Mari mhr

Mordvin Moksha mdf
Erzya myv

Permian Udmurt udm
Komi-Permyak koi
Komi-Zyrian kpv

Hungarian Hungarian hun
Khantyic Northern Khanty kca
Mansi Northern Mansi mns
Samoyedic Northern Selkup sel

Tundra Nenets yrk
Forest Enets enf
Nganasan nio

Eskimo-Aleut Eskimo Siberian Yupik ess
Kalaallisut kal

Aleut Aleut ale
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Family Branch Language ISO 639-3
Indo-European Indo-Aryan Bengali ben

Hindi hin
Iranian Pashto pbu

Persian pes
Northern Kurdish kmr
Ossetian oss

Armenic Armenian hye
Graeco-Phrygian Greek ell
Albanian Albanian sqi
Balto-Slavic Lithuanian lit

Latvian lav
Bulgarian bul
Croatian hrv
Slovene slv
Slovak slk
Czech ces
Polish pol
Ukrainian ukr
Belarusian bel
Russian rus

Germanic Icelandic isl
Norwegian (Bokmål) nor
Swedish swe
Danish dan
German deu
Dutch nld
English eng

Celtic Irish gle
Welsh cym
Breton bre

Italic Latin lat
French fra
Catalan cat
Spanish spa
Portuguese por
Italian ita
Romanian ron

Dravidian South Dravidian Kannada kan
Malayalam mal
Tamil tam
Telugu tel

Kartvelian Georgian-Zan Georgian kat
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Family Branch Language ISO 639-3
Turkic Bolgar Chuvash chv

West Oghuz Turkish tur
North Azerbaijani azj

Uzbek Northern Uzbek uzn
Kipchak Kazakh kaz

Bashkir bak
Tatar tat

North Siberian Turkic Sakha sah
Mongolic Eastern Mongolic Khalkha Mongolian khk

Buryat bua
Kalmyk xal

Tungusic Northern Tungusic Evenki evn
Central Tungusic Nanai gld
Manchu-Jurchen Manchu mnc

Koreanic Korean Korean kor
Japonic Japanesic Japanese jpn
Ainu Ainu Hokkaido Ainu ain
Nivkh Nivkh Nivkh niv
Yukaghir Northern Yukaghir Tundra Yukaghir ykg

Kolymic Kolyma Yukaghir yux
Chukotko- Chukotian Chukchi ckt
Kamchatkan Itelmen Itelmen itl
Yeniseian Northern Yeniseian Ket ket
Burushaski Burushaski Burushaski bsk
Basque Basque Basque eus
Abkhaz-Adyge Abkhaz-Abaza Abkhaz abk

Circassian Adyghe ady
Nakh-Daghestanian Nakh Chechen che

Daghestanian Avar ava
Tsez ddo
Lak lbe
Lezgian lez
Dargwa dar

Afro-Asiatic Semitic Standard Arabic arb
Hebrew heb

Sino-Tibetan Sinitic Mandarin Chinese cmn

Figure A.1: List of languages in NorthEuraLex 0.9 with their Glottolog
classification
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A.2 Family trees from Glottolog 3.0

The guide trees for PLFI are based on a reduced version of the Glottolog tree
which only covers the NorthEuraLex languages. The reduced tree was compact-
ified by removing all the non-branching nodes, and giving each mother nodes
the label of the highest common ancestor of all of its descendant nodes. The yEd
Graph Editor1 was used to visualize the non-trivial family trees resulting from
this procedure.

Figure A.2: Reduced Glottolog family trees for NorthEuraLex 0.9

1https://www.yworks.com/products/yed
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A.3 Summary of lexical flow gold standard

This gold standard attempts to cover all contacts between languages in North-
EuraLex 0.9, which implies that it also contains some contacts that were not
discussed as part of any case study. For each attested language, the direct an-
cestor in the reduced Glottolog tree for all of NorthEuraLex is given. This first
incoming arrow is not necessarily identical to the direct ancestor in the case stud-
ies, which are always based on a tree which is further reduced to only contain
the languages spanned by the case study as leaves. All further arrows are due
to contact, completely specifying all donor languages of lexical material in the
respective language. Contacts between proto-languages are mentioned multiple
times as influencing the descendants of the recipient language, with additional
remarks specifying which ancestor of the current language was the recipient
language.

Language Parent Donor languages (≃ incoming arrows)
ben: Bengali Indo-Aryan
hin: Hindi Indo-Aryan pes, eng
pbu: Pashto Iranian pes, hin, arb
pes: Persian Iranian arb
kmr: Northern Kurdish Central Iranian PBS tur, arb
oss: Ossetian Central Iranian PBS ady, che, Turkic, oss
hye: Armenian Indo-European kat, Iranian, pes
ell: Greek Indo-European lat, tur
sqi: Albanian Indo-European ell, lat, Slavic, tur
lit: Lithuanian Eastern Baltic
lav: Latvian Eastern Baltic deu, rus
bul: Bulgarian South Slavic rus, tur
hrv: Croatian Western South Slavic
slv: Slovene Western South Slavic
slk: Slovak Czech-Slovak
ces: Czech Czech-Slovak
pol: Polish West Slavic lat
ukr: Ukrainian East Slavic pol
bel: Belarusian East Slavic pol, rus
rus: Russian East Slavic
isl: Icelandic West Scandinavian
nor: Norwegian West Scandinavian deu, dan
swe: Swedish North Germanic deu
dan: Danish North Germanic deu
deu: German Franconian lat (via West Germanic)
nld: Dutch Franconian lat (via West Germanic), fra
eng: English West Germanic lat (via West Germanic),
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Language Parent Donor languages (≃ incoming arrows)
North Germanic, fra

gle: Irish Celtic eng
cym: Welsh Brythonic lat, eng
bre: Breton Brythonic lat, fra
lat: Latin Italic
fra: French Western Romance West Germanic, ita
cat: Catalan SW Shifted Romance fra, spa
spa: Spanish West Ibero-Romance lat, arb, fra
por: Portuguese West Ibero-Romance lat, arb
ita: Italian Italo-Western Romance
ron: Romanian Romance sqi, Slavic, lat, hun, deu,

ell, tur, fra
fin: Finnish Finnic E. Baltic (via Finnic), swe
krl: North Karelian Karelic Finnic E. Baltic (via Finnic), rus
olo: Olonets Karelian Karelic Finnic E. Baltic (via Finnic), rus
vep: Veps Finnic Eastern Baltic (via Finnic), rus
ekk: Estonian Finnic Eastern Baltic (via Finnic), deu, rus
liv: Livonian Finnic Eastern Baltic (via Finnic), deu, lav
sma: Southern Saami Western Saami Finnic and Germanic (via Saami),

N. Germanic (via W. Saami), nor
smj: Lule Saami Central Western Saami Finnic and Germanic (via Saami),

N. Germanic (via W. Saami), swe
sme: Northern Saami Central Western Saami Finnic and Germanic (via Saami),

N. Germanic (via W. Saami), fin
smn: Inari Saami Mainland Eastern Saami Finnic and Germanic (via Saami),

fin
sms: Skolt Saami Mainland Eastern Saami Finnic and Germanic (via Saami),

krl, fin, rus
sjd: Kildin Saami Eastern Saami Finnic and Germanic (via Saami),

krl, rus
mrj: Hill Mari Mari chv (via Mari), tat (via Mari), rus
mhr: Meadow Mari Mari chv (via Mari), tat (via Mari)
mdf: Moksha Mordvin
myv: Erzya Mordvin rus
udm: Udmurt Permian hun (via Permian), tat, bak, rus
koi: Komi-Permyak Komi rus
kpv: Komi-Zyrian Komi
hun: Hungarian Uralic kca, Permian, Iranian, Turkic,

West Slavic, South Slavic, deu
kca: Northern Khanty Uralic mns, hun, rus
mns: Northern Mansi Uralic kca, kpv, rus
yrk: Tundra Nenets Enets-Nenets Turkic (via Samoyedic), rus,

Tungusic (via Samoyedic), kpv
enf: Forest Enets Enets-Nenets Turkic (via Samoyedic), rus,

Tungusic (via Samoyedic), yrk
sel: Northern Selkup Samoyedic Turkic (via Samoyedic), rus,
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Language Parent Donor languages (≃ incoming arrows)
Tungusic (via Samoyedic), kca

nio: Nganasan Samoyedic Turkic (via Samoyedic), rus,
Tungusic (via Samoyedic)

chv: Chuvash Turkic rus
tur: Turkish West Oghuz arb, pes, fra, ita
azj: North Azerbaijani West Oghuz arb, pes
uzn: Northern Uzbek Oghuz-Kipchak-Uyghur pes
kaz: Kazakh Kipchak Mongolic, rus
bak: Bashkir North Kipchak rus
tat: Tatar North Kipchak rus
sah: Sakha Common Turkic rus, bua, xal
khk: Khalkha Mongolian Khalkha-Buriat Turkic, rus
bua: Buryat Khalkha-Buriat rus
xal: Kalmyk Mongolic Kipchak, rus
evn: Evenki Tungusic bua, sah, rus
gld: Nanai Tungusic bua, rus, cmn
mnc: Manchu Tungusic khk, cmn
kor: Korean (none) Mongolic, Tungusic, cmn, eng
jpn: Japanese (none) cmn, eng
ain: Hokkaido Ainu (none) niv, jpn
niv: Nivkh (none) gld, rus
ykg: Tundra Yukaghir Yukaghir Uralic (via Yukaghir), evn (via Yukaghir),

sah (via Yukaghir), rus
yux: Kolyma Yukaghir Yukaghir Uralic (via Yukaghir), evn (via Yukaghir),

sah (via Yukaghir), rus
ckt: Chukchi Chukotko-Kamchatkan Eskimo-Aleut (via CK)
itl: Itelmen Chukotko-Kamchatkan Eskimo-Aleut (via CK), rus
ess: Siberian Yupik Eskimo rus
kal: Kalaallisut Eskimo dan
ale: Aleut Eskimo-Aleut rus
ket: Ket (none) rus
kan: Kannada South Dravidian I Indo-Aryan (via Dravidian), eng
mal: Malayalam Tamil-Kota Indo-Aryan (via Dravidian), eng
tam: Tamil Tamil-Kota Indo-Aryan (via Dravidian), eng
tel: Telugu Dravidian Indo-Aryan (via Dravidian), eng
bsk: Burushaski (none) hin, Turkic
kat: Georgian (none) pes, azj
eus: Basque (none) spa
abk: Abkhaz Abkhaz-Adyge kat, rus
ady: Adyghe Abkhaz-Adyge rus, azj, Kipchak
che: Chechen Nakh-Daghestanian oss, pes, Kipchak, rus
ava: Avar Avar-Andic-Tsezic kat, oss, Kipchak, arb, rus
ddo: Tsez Avar-Andic-Tsezic kat, azj, arb, rus, ava
lbe: Lak Daghestanian azj, arb, rus, ava
lez: Lezgian Daghestanian azj, arb, rus
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Language Parent Donor languages (≃ incoming arrows)
dar: Dargwa Daghestanian azj, Kipchak, arb, rus, ava
arb: Standard Arabic Afro-Asiatic
heb: Hebrew Afro-Asiatic Germanic, SW Shifted Romance
cmn: Mandarin Chinese (none)

Figure A.3: Gold standard for lexical flow, listing all incoming flows for
each language

A.4 Concepts of NorthEuraLex 0.9

The following table contains the full list of NorthEuraLex concepts in an order
which is roughly grouped by semantic criteria, starting with body parts, then
moving through landscape features towards plant and animal names, and so on.
Internally, all concepts are identified by a German-language lemma with a rough
part-of-speech annotation, which is given as the last column.Whenever concepts
are referred to in the main text, they are instead referred to by the (sometimes
annotated) English lemmas in the first column. The central column contains an-
notations which serve to disambiguate polysemous English glosses.

Concept Gloss and Explanation Internal ID
eye eye [anatomy] Auge::N
ear ear [anatomy] Ohr::N
nose nose [anatomy] Nase::N
mouth mouth [anatomy] Mund::N
tooth tooth (e.g. human incisor) Zahn::N
tongue tongue [anatomy] Zunge::N
lip lip [anatomy] Lippe::N
cheek cheek [anatomy] Wange::N
face face (of a human) Gesicht::N
forehead forehead (of a human) Stirn::N
hair hair (of human head) Haar::N
moustache moustache (of a man) Schnurrbart::N
beard beard (generic) Bart::N
chin chin [anatomy] Kinn::N
jaw jaw [anatomy] Kiefer[Anatomie]::N
throat throat (from inside) Kehle::N
neck neck (from outside) Hals::N
nape (of neck) nape (back side of neck) Genick::N
head head (e.g. of a human) Kopf::N
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Concept Gloss and Explanation Internal ID
back back (of a human) Rücken::N
belly belly (of a human) Bauch::N
navel navel [anatomy] Nabel::N
breast bosom (female breast) Busen::N
chest breast (e.g. of a man) Brust::N
shoulder shoulder [anatomy] Schulter::N
arm arm (of a human) Arm::N
elbow elbow (of a human) Ellenbogen::N
hand hand (of a human) Hand::N
palm of hand palm [anatomy] Handfläche::N
finger finger (of a human) Finger::N
fingernail fingernail [anatomy] Fingernagel::N
fingernail or toenail nail [anatomy] Nagel[Anatomie]::N
toe toe (of a human) Zeh::N
foot foot (of a human) Fuß::N
heel heel [anatomy] Ferse::N
knee knee [anatomy] Knie::N
thigh thigh [anatomy] Oberschenkel::N
leg leg (of a human) Bein::N
body body (of a living organism) Körper::N
skin skin (of a human) Haut::N
blood blood (fluid) Blut::N
vein vein [anatomy] Ader::N
tendon sinew [anatomy] Sehne::N
bone bone [anatomy] Knochen::N
brain brain [anatomy] Gehirn::N
heart heart [anatomy] Herz::N
stomach stomach [anatomy] Magen::N
liver liver [anatomy] Leber::N
breath breath (breathing) Atem::N
hunger hunger (condition) Hunger::N
tear (of eye) tear (drop of fluid) Träne::N
taste flavour (of something) Geschmack::N
flavor odour (of something) Geruch::N
sleep (state) sleep (condition) Schlaf::N
dream dream (while sleeping) Traum::N
sky sky (visible) Himmel::N
sun sun (celestial body) Sonne::N
moon moon (celestial body) Mond::N
star star (in the night sky) Stern::N
air air (where birds fly) Luft::N
wind wind (outside) Wind::N
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Concept Gloss and Explanation Internal ID
wave wave (on water) Welle::N
water water (cold water) Wasser::N
rock stone (substance) Stein::N
ground ground (soil, earth) Boden::N
earth (soil) earth (substance) Erde::N
dust dust (settled) Staub::N
smoke (exhaust) smoke (from a fire) Rauch::N
spark spark (from a fire) Funke::N
fire fire (flames) Feuer::N
light (radiation) light (from a natural source) Licht::N
shade shadow (shady place) Schatten::N
weather weather Wetter::N
fog fog Nebel::N
cloud cloud (bright) Wolke::N
rain (precipitation) rain (falling) Regen::N
snow snow (on the ground) Schnee::N
ice ice (natural substance) Eis::N
frost frost (freezing temperature) Frost::N
chill chill (low temperature) Kälte::N
heat heat (high temperature) Hitze::N
hoarfrost hoarfrost Raureif::N
rainbow rainbow Regenbogen::N
thunder thunder (during thunderstorm) Donner::N
current current (of a river) Strömung::N
drop (of liqid) drop (e.g. water) Tropfen::N
foam foam (on liquid) Schaum::N
dirt dirt (on objects) Schmutz::N
lake lake See::N
swamp swamp (impassable wet land) Sumpf::N
moor moor (wasteland covered by heath) Moor::N
meadow meadow (land covered with grass) Wiese::N
forest forest Wald::N
hill hill (possibly wooded) Hügel::N
elevation elevation (of the ground) Anhöhe::N
mountain mountain (woodless) Berg::N
summit summit (of a mountain) Gipfel::N
cave cave (in a mountain) Höhle::N
precipice slope (of a mountain) Abhang::N
spring (of water) source (of a river) Quelle::N
brook brook (small river) Bach::N
river river (larger river) Fluss::N
shore shore (of a lake) Ufer::N
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Concept Gloss and Explanation Internal ID
coast coast (seashore) Küste::N
mainland land (as opposed to sea) Festland::N
sea sea Meer::N
bay cove, bay (small coastal inlet) Bucht::N
island island Insel::N
flower flower Blume::N
grass grass (ground cover) Gras::N
root root (of a plant) Wurzel::N
tree tree (plant) Baum::N
tree trunk trunk (of a tree) Stamm::N
bark bark (of a tree) Rinde::N
branch limb (of a tree) Ast::N
twig twig (of a tree) Zweig::N
leaf leaf (of a plant) Blatt::N
birch birch Birke::N
pine pine (pine tree) Kiefer[Baum]::N
willow willow Weide[Baum]::N
fir fir Tanne::N
horn (anatomy) horn (of an animal) Horn::N
feather feather (of a bird) Feder::N
fur fur (of an animal) Fell::N
wing wing (of a bird) Flügel::N
claw claw (e.g. of a bird) Klaue::N
paw paw (e.g. of a cat) Kralle::N
tail tail (e.g. of a dog) Schwanz::N
egg egg (e.g. of a bird) Ei::N
nest nest (e.g. of a bird) Nest::N
lair lair (e.g. of a fox) Bau::N
animal animal Tier::N
flock (of sheep) flock (e.g. of sheep) Herde::N
cow cow Kuh::N
bull bull (male bovine) Bulle::N
horse horse Pferd::N
sheep sheep Schaf::N
pig pig Schwein::N
dog dog Hund::N
cat cat Katze::N
bear bear Bär::N
sqirrel squirrel Eichhörnchen::N
elk elk Elch::N
fox fox Fuchs::N
hare hare Hase::N
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Concept Gloss and Explanation Internal ID
mouse mouse Maus::N
wolf wolf Wolf::N
bird bird Vogel::N
swarm swarm (e.g. of birds) Schwarm::N
chicken chicken Huhn::N
rooster cock (male chicken) Hahn::N
goose goose Gans::N
eagle eagle Adler::N
duck duck Ente::N
owl owl Eule::N
crane crane Kranich::N
crow crow Krähe::N
cuckoo cuckoo Kuckuck::N
swan swan Schwan::N
fish fish Fisch::N
perch (fish) perch Barsch::N
pike (fish) pike Hecht::N
snake snake Schlange[Tier]::N
worm worm Wurm::N
spider spider Spinne::N
ant ant Ameise::N
louse louse Laus::N
mosqito gnat Mücke::N
fly (insect) fly (insect) Fliege::N
butterfly butterfly Schmetterling::N
berry berry (generic term) Beere::N
apple apple Apfel::N
mushroom mushroom (generic term) Pilz::N
onion onion (edible) Zwiebel::N
seed seed (fertilized grain) Saat::N
grain (single) grain (single grain) Korn::N
hay hay Heu::N
skin (of fruit) peel, husk (e.g. of an apple) Schale::N
pit (pothole) pit (hole in the ground) Grube::N
trap (pitfall) trap (e.g. mouse trap) Falle::N
noose noose (e.g. on a rope) Schlinge::N
track (of animal) track (e.g. of an animal) Spur::N
ash ash (solid remains of a fire) Asche::N
filth filth (that which soils or defiles) Dreck::N
iron iron (metal) Eisen::N
gold gold (metal) Gold::N
silver silver (metal) Silber::N
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Concept Gloss and Explanation Internal ID
charcoal coal (combustible substance) Kohle::N
glass glass (transparent substance) Glas::N
clay clay (ductile material) Lehm::N
sand sand (material) Sand::N
person human (human being) Mensch::N
man man (adult male human) Mann::N
woman woman Frau::N
child (young human) child (e.g. 10 years old) Kind::N
boy boy (male child) Junge::N
girl girl (female child) Mädchen::N
family family (relatives living together) Familie::N
grandfather grandfather (e.g. father’s father) Großvater::N
grandmother grandmother (e.g. father’s mother) Großmutter::N
parents parents Eltern::N
father father Vater::N
mother mother Mutter::N
son son Sohn::N
daughter daughter Tochter::N
brother brother (e.g. elder brother) Bruder::N
sister sister (e.g. elder sister) Schwester::N
uncle uncle (e.g. father’s brother) Onkel::N
aunt aunt (e.g. father’s sister) Tante::N
husband husband (male spouse) Ehemann::N
wife wife (female spouse) Ehefrau::N
joy joy (emotion) Freude::N
laughter laughter Gelächter::N
happiness happiness Glück::N
grief grief (sorrow, sadness) Kummer::N
longing wish (longing) Wunsch::N
desire desire (to have something) Lust::N
spirit spirit (inner energy of a being) Geist::N
thought thought Gedanke::N
memory memory (human ability) Gedächtnis::N
mind mind (ability for rational thought) Verstand::N
meaning meaning (denotation) Sinn::N
reason reason (motive, rationale) Grund::N
truth truth Wahrheit::N
conversation talk (conversation) Gespräch::N
fairy tale fairy tale Märchen::N
story story (oral narration) Erzählung::N
message message Nachricht::N
news news Neuigkeit::N
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Concept Gloss and Explanation Internal ID
name name (of a person) Name::N
riddle puzzle (riddle) Rätsel::N
speech speech (long oral message) Rede::N
language language Sprache::N
voice voice (sounds uttered by vocal cords) Stimme::N
word word (unit of language) Wort::N
sign sign (object bearing a message) Zeichen::N
call (appeal) call (appeal) Ruf::N
noise noise (unwanted loud sounds) Lärm::N
sound or noise sound (sensation perceived by ear) Laut::N
tone (music) tone (sound of a specific pitch) Ton::N
song song Lied::N
qiet calm (absence of disturbances) Ruhe::N
people (several) people (many persons) Leute::N
people nation (defined by common culture) Volk::N
work (labour) work (employment) Arbeit::N
guest guest Gast::N
gift gift Geschenk::N
game game (playful activity) Spiel::N
companionship company (companionship) Gesellschaft::N
help help Hilfe::N
friend friend (enjoyable company) Freund::N
companion companion (one spends time with) Kamerad::N
matter (affair) matter (affair) Angelegenheit::N
count (number) count (quantity counted) Anzahl::N
kind (thing) sort (type) Art::N
piece piece (separable part) Stück::N
part part (fraction of a whole) Teil::N
half half (of a quantity) Hälfte::N
circle circle (geometric figure) Kreis::N
cross cross (geometric figure) Kreuz::N
line line (geometric figure) Linie::N
stroke (of pen) stroke (with writing implement) Strich::N
gap gap (between objects) Abstand::N
distance distance (between two points) Entfernung::N
area area (extent of surface, region) Gegend::N
space (free) space (available space, e.g. in closet) Platz::N
place (position) place (location, position) Ort::N
side (of object) side (of an object) Seite::N
middle middle (central part of something) Mitte::N
item (touchable) item (physical object) Gegenstand::N
thing thing (distinct entity) Sache::N
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Concept Gloss and Explanation Internal ID
fringe fringe (peripheral part) Rand::N
edge edge (sharp terminating border) Kante::N
corner (outside) corner (external angle) Ecke::N
tip (of object) tip (of a pointy object) Spitze::N
end (of space) end (of a long object) Ende::N
hole hole (in an object) Loch::N
corner angle (internal, e.g. of a room) Winkel::N
pattern pattern (regular repeated elements) Muster::N
size (of object) size (dimensions of an object) Größe::N
length length Länge::N
height height Höhe::N
weight weight (mass as measured) Gewicht::N
amount amount (quantity of a material) Menge::N
heap heap Haufen::N
row (of objects) row (line of objects) Reihe::N
boat boat Boot::N
paddle oar (rowing implement) Ruder::N
sledge sleigh Schlitten::N
ski ski Ski::N
campfire campfire Lagerfeuer::N
load load (on a vehicle) Last::N
walk (trip) walk (trip made by walking) Gang::N
step step (single pace) Schritt::N
north north Norden::N
south south Süden::N
west west Westen::N
east east Osten::N
wood wood (material) Holz::N
board board (large thin piece of wood) Brett::N
slab slab (flat piece of solid material) Platte::N
support (of object) support, rest (which keeps upright) Stütze::N
pole pole (long and slender piece of wood) Stange::N
stick stick (piece of wood used as a tool) Stock::N
staff staff (long straight stick) Stab::N
tube pipe (hollow conduit, tube) Rohr::N
house house (building) Haus::N
home home (one’s own dwelling place) Heim::N
stove stove (heater) Ofen::N
floor floor (supporting surface of a room) Fußboden::N
table table Tisch::N
chair chair Stuhl::N
cradle cradle Wiege::N
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Concept Gloss and Explanation Internal ID
bed bed Bett::N
shelf shelf Regal::N
box box Kiste::N
window window Fenster::N
door door Tür::N
gate gate Tor::N
fence fence Zaun::N
roof roof Dach::N
ladder ladder Leiter::N
broom broom Besen::N
spade spade Spaten::N
shovel shovel Schaufel::N
fork fork (for eating) Gabel::N
spoon spoon Löffel::N
knife knife Messer::N
nail (tool) nail (spike-shaped metal fastener) Nagel::N
net net (mesh of string) Netz::N
hook hook Haken::N
handle handle (by which object is held) Griff::N
lock lock Schloss::N
picture picture Bild::N
idol figure (e.g. representing a god) Figur::N
doll doll Puppe::N
pouch pouch Beutel::N
bundle bundle (objects tied together) Bündel::N
bag bag (container for carrying) Tasche::N
bucket bucket Eimer::N
lid (cover, cap) cover, lid (of a container) Deckel::N
dishware dishes (dishware, crockery) Geschirr::N
sack sack Sack::N
cup cup Tasse::N
pot pot (vessel for cooking) Topf::N
kettle kettle Kessel::N
meal meal (process of food intake) Essen::N
food food Nahrung::N
dish (food) dish Speise::N
meat meat Fleisch::N
grain corn (cereal grown for its grain) Getreide::N
mush mush Brei::N
bread bread Brot::N
slice slice (e.g. of bread) Scheibe::N
fat (organic substance) fat Fett::N

302



A.4 Concepts of NorthEuraLex 0.9

Concept Gloss and Explanation Internal ID
butter butter Butter::N
oil (organic substance) oil (liquid vegetable fat) Öl::N
salt salt Salz::N
soup soup Suppe::N
honey honey Honig::N
milk milk Milch::N
tea tea (drink) Tee::N
leather leather Leder::N
wool wool Wolle::N
cloth cloth (woven fabric) Stoff::N
needle (for sewing) needle (for sewing) Nadel::N
thread thread Faden::N
button button (fastener on clothes) Knopf::N
knot knot (looping of string) Knoten::N
paint (pigments) paint (substance for colouring) Farbe::N
clothes clothes Kleidung::N
shirt shirt Hemd::N
collar collar (e.g. on a coat) Kragen::N
sleeve sleeve Ärmel::N
trousers trousers Hose::N
belt belt [clothing] Gürtel::N
cap cap (head covering) Mütze::N
shoe shoe Schuh::N
boot boot (shoe covering part of leg) Stiefel::N
ring ring (jewellery) Ring::N
ribbon ribbon (strip of cloth) Band::N
comb comb (implement for grooming) Kamm::N
mirror mirror Spiegel::N
strap strap (e.g. strip of leather) Riemen::N
string string (made from twisted threads) Schnur::N
leash leash (e.g. dog leash) Leine::N
blanket blanket (for sleeping) Decke::N
pillow pillow (for sleeping) Kissen::N
scarf scarf (worn around shoulders) Tuch::N
towel towel (sed for wiping) Handtuch::N
force force (applied to produce effect) Kraft::N
strength strength (being strong) Stärke::N
healthy health Gesundheit::N
disease illness Krankheit::N
pain pain Schmerz::N
wound wound Wunde::N
fever fever Fieber::N
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Concept Gloss and Explanation Internal ID
medicine medicine (drug) Arznei::N
bridge bridge Brücke::N
well well (source of water) Brunnen::N
pasture pasture Weide::N
path path (trail used by pedestrians) Pfad::N
way way (connection between places) Weg::N
road road (way for travelling by vehicle) Straße::N
village village Dorf::N
town town Stadt::N
letter letter (written message) Brief::N
book book Buch::N
character character (written symbol, letter) Buchstabe::N
newspaper newspaper Zeitung::N
life life (state of being alive) Leben::N
death death Tod::N
grave grave Grab::N
church church Kirche::N
sin sin Sünde::N
god god Gott::N
worker worker Arbeiter::N
boss boss (supervisor) Chef::N
master (trade) master (expert tradesman) Meister::N
physician doctor (physician) Arzt::N
teacher teacher Lehrer::N
money money Geld::N
business business (commercial activity) Geschäft::N
shop shop Laden::N
price price Preis::N
ware ware Ware::N
benefit benefit (advantage) Nutzen::N
wealth wealth Reichtum::N
world world (universe) Welt::N
country country (set region of land) Land::N
state (politics) state (sovereign polity) Staat::N
king king König::N
power power (ability to control) Macht::N
border border (between states) Grenze::N
war war Krieg::N
enemy enemy (hostile person) Feind::N
violence violence (use of force) Gewalt::N
fight fight (physical confrontation) Kampf::N
bow bow (weapon) Bogen[Waffe]::N
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Concept Gloss and Explanation Internal ID
arrow arrow (projectile shot from bow) Pfeil::N
gun gun (firearm) Gewehr::N
mistake mistake (wrong action or decision) Fehler::N
untruth lie Lüge::N
damage (harm) damage (material harm, detriment) Schaden::N
bad luck misfortune (undesirable condition) Unglück::N
fault fault (blame, responsibility) Schuld::N
age age (number of years since birth) Alter::N
end (of time) end (conclusion) Schluss::N
time time (constant passing of events) Zeit::N
day (not night) day Tag::N
morning morning Morgen::N
midday noon Mittag::N
evening evening Abend::N
night night Nacht::N
week week Woche::N
month month Monat::N
year year Jahr::N
springtime spring Frühling::N
summer summer Sommer::N
autumn autumn Herbst::N
winter winter Winter::N
january January Januar::N
february February Februar::N
march March März::N
april April April::N
may May Mai::N
june June Juni::N
july July Juli::N
august August August::N
september September September::N
october October Oktober::N
november November November::N
december December Dezember::N
monday Monday Montag::N
tuesday Tuesday Dienstag::N
wednesday Wednesday Mittwoch::N
thursday Thursday Donnerstag::N
friday Friday Freitag::N
saturday Saturday Samstag::N
sunday Sunday Sonntag::N
big big (e.g. rock) groß::A
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Concept Gloss and Explanation Internal ID
small little (e.g. rock) klein::A
long long (object) lang::A
short short (object) kurz::A
wide wide (e.g. river, bridge) breit::A
narrow narrow (e.g. river, bridge) schmal::A
dense dense (e.g. hair, forest) dicht::A
thick thick (flat object) dick[Gegenstand]::A
thin (of shape of object) thin (flat object) dünn::A
fine or thin delicate, fine (e.g. yarn, web) fein::A
solid firm, solid (e.g. wood, wall) fest::A
flat flat (object) flach::A
smooth smooth (surface) glatt::A
hard hard (e.g. shell) hart::A
soft soft (e.g. cushion) weich::A
round round (circular) rund::A
pointed pointed (e.g. needle) spitz::A
sharp sharp (e.g. knife) scharf::A
blunt blunt (e.g. knife) stumpf::A
heavy heavy (of weight) schwer::A
beautiful beautiful (e.g. flower) schön::A
hot hot (e.g. fire) heiß::A
warm warm warm::A
cold cold kalt::A
cool cool kühl::A
fresh fresh (e.g. air) frisch::A
damp damp feucht::A
wet wet nass::A
dry dry trocken::A
full full (container) voll::A
empty empty (container) leer::A
open (of door) open (e.g. door) offen::A
closed closed (e.g. door) geschlossen::A
clean clean sauber::A
dirty dirty schmutzig::A
raw raw (uncooked) roh::A
ripe ripe (e.g. fruit) reif::A
tasty delicious (tasty) lecker::A
sweet sweet (taste) süß::A
bitter bitter (taste) bitter::A
sour sour (e.g. lemon) sauer::A
bright bright (full of light) hell::A
dark dark (devoid of light) dunkel::A
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Concept Gloss and Explanation Internal ID
black black schwarz::A
white white weiß::A
red red rot::A
yellow yellow gelb::A
blue blue blau::A
green green grün::A
grey grey grau::A
colorful colourful (multicolored) bunt::A
cheap cheap billig::A
expensive expensive (goods) teuer::A
precious precious wertvoll::A
blind blind blind::A
deaf deaf taub::A
powerful powerful (forceful) kräftig::A
strong strong (tough) stark::A
weak weak (feeble) schwach::A
fat (obese) fat (person) fett::A
thin (slim) slim schlank::A
good-looking pretty hübsch::A
evil evil (malevolent) böse::A
stupid stupid (person) dumm::A
lazy lazy faul::A
diligent diligent fleißig::A
stingy stingy geizig::A
clever clever (intelligent) klug::A
dexterous skilful geschickt::A
dear dear (beloved) lieb::A
merry merry lustig::A
gentle gentle (tender) sanft::A
be hungry hungry hungrig::A
sick sick, ill krank::A
naked naked nackt::A
sad sad (emotion) traurig::A
living living lebendig::A
good good (e.g. tool) gut::A
bad bad (e.g. tool) schlecht::A
correct (right) correct richtig::A
severe nasty, dire schlimm::A
true true (truthful) wahr::A
old (used) old (e.g. house) alt::A
new new neu::A
former former (erstwhile) ehemalig::A
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Concept Gloss and Explanation Internal ID
old (aged) aged, old (person) alt[Lebewesen]::A
young young jung::A
poor poor (needy) arm::A
rich rich reich::A
familiar familiar bekannt::A
fame famous berühmt::A
foreign foreign fremd::A
different different verschieden::A
near near nah::A
far far fern::A
left left linker::A
right right (e.g. right leg) rechter::A
other other anderer::A
first first erster::A
second second zweiter::A
third third dritter::A
last (final) last (in a row) letzter::A
alone alone allein::ADV
all at once at once (in one go) auf einmal::ADV
together together zusammen::ADV
for a long time long lange::ADV
suddenly suddenly plötzlich::ADV
instantly instantly sofort::ADV
later later später::ADV
now now jetzt::ADV
today today heute::ADV
tomorrow tomorrow morgen::ADV
soon soon bald::ADV
then then dann::ADV
yesterday yesterday gestern::ADV
once (in the past) once (once upon a time) einst::ADV
at that time at that time damals::ADV
afterwards afterwards danach::ADV
before before vorher::ADV
at first at first zuerst::ADV
one time once einmal::ADV
sometimes sometimes manchmal::ADV
often often oft::ADV
always always immer::ADV
never never niemals::ADV
here here hier::ADV
hither hither hierhin::ADV
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Concept Gloss and Explanation Internal ID
hence hence von hier::ADV
there there dort::ADV
thither thither dorthin::ADV
ahead ahead geradeaus::ADV
forward forward vorwärts::ADV
backward backward rückwärts::ADV
back (direction) back zurück::ADV
down or below below unten::ADV
down down hinab::ADV
above above oben::ADV
up up hinauf::ADV
everywhere everywhere überall::ADV
not not nicht::ADV
a little a little ein wenig::ADV
hardly hardly kaum::ADV
very very sehr::ADV
so (in this way) so so::ADV
still still noch::ADV
only only (e.g. only one cow) nur::ADV
already already schon::ADV
again again wieder::ADV
in vain in vain vergebens::ADV
in front of in front of vor::PRP
behind behind hinter::PRP
below or under under unter::PRP
through through (e.g. window, hole) durch::PRP
next to next to neben::PRP
between between zwischen::PRP
because of because of wegen::PRP
this this dies::PRN
that that das::PRN
all everything alles::PRN
i I ich::PRN
thou thou du::PRN
he or she or it he er::PRN
we we wir::PRN
you you (plural) ihr::PRN
they they sie::PRN
what what was::FPRN
who who wer::FPRN
where where wo::FADV
whither where to wohin::FADV
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Concept Gloss and Explanation Internal ID
how how wie::FADV
why why warum::FADV
how much how much wieviel::FNUM
one one eins::NUM
two two zwei::NUM
three three drei::NUM
four four vier::NUM
five five fünf::NUM
six six sechs::NUM
seven seven sieben::NUM
eight eight acht::NUM
nine nine neun::NUM
ten ten zehn::NUM
eleven eleven elf::NUM
twelve twelve zwölf::NUM
twenty twenty zwanzig::NUM
thirty thirty dreißig::NUM
forty forty vierzig::NUM
fifty fifty fünfzig::NUM
sixty sixty sechzig::NUM
seventy seventy siebzig::NUM
eighty eighty achtzig::NUM
ninety ninety neunzig::NUM
hundred a hundred hundert::NUM
thousand a thousand tausend::NUM
and and und::CNJ
or or oder::CNJ
stand stand (of a person) stehen::V
sit sit (of a person) sitzen::V
lie (rest) lie (of a person) liegen::V
hang hang (e.g. “the coat is hanging”) hängen::V
become become (turn into) werden::V
happen happen (occur) passieren::V
start begin (start existing) beginnen::V
cease end (stop existing) enden::V
change (become different) change (become sth. different) wechseln::V
rise (move upwards) rise (of the sun) aufgehen[Sonne]::V
set (heavenly bodies) set (of the sun) untergehen[Sonne]::V
shine shine (of the sun) scheinen[Sonne]::V
thunder (verb) thunder (e.g. “it thundered”) donnern::V
blow (of wind) blow (of wind) wehen::V
flow (of river) stream (in continuous manner) strömen::V
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Concept Gloss and Explanation Internal ID
flow flow (e.g. water) fließen::V
revolve revolve (e.g. of a wheel) sich drehen::V
sway sway (move backward and forward) schwanken::V
swing (movement) swing (move from side to side) schwingen::V
fall fall (swiftly move downwards) fallen::V
burning burn (e.g. of wood) brennen::V
smoke (emit smoke) smoke (give off smoke) rauchen::V
rain (raining) rain (e.g. “it is raining”) regnen::V
freeze freeze (solidify, of liquid) gefrieren::V
thaw thaw (e.g. of snow) tauen::V
melt melt (e.g. of ice) schmelzen::V
dry up dry (e.g. of clothes) trocknen::V
boil (of liqid) boil (of water) sieden::V
spoil (become spoiled) rot (e.g. of meat) faulen::V
decay decay (e.g. of wood) verfaulen::V
snap (into bits) snap (e.g. of a thread) reißen::V
sink (in water) sink (e.g. stone in water) versinken::V
pass pass (of time) vergehen::V
appear appear (e.g. light, ghost) erscheinen::V
disappear disappear (e.g. light, ghost) verschwinden::V
drop(movement) drop, descend (e.g. water level) sinken::V
decrease decrease (of quantity) abnehmen::V
increase increase (of quantity) zunehmen::V
rise (movement) rise (e.g. water level) steigen::V
grow grow (e.g. of a plant) wachsen::V
shine (of metal) shine (e.g. of metal, shiny surface) glänzen::V
twinkle sparkle, twinkle (e.g. star, light) funkeln::V
be noisy be noisy (e.g. children) lärmen::V
chime chime (e.g. of bell) läuten::V
ring (signal) ring (e.g. doorbell, phone) klingeln::V
tinkle tinkle (e.g. glass) klirren::V
roar (of sea) roar (e.g. storm, sea) brausen::V
rustle (of leaves) rustle (e.g. of leaves in breeze) rauschen::V
sound (of instrument) sound (e.g. of instrument) klingen::V
barking bark (of dog) bellen::V
howl howl (e.g. of wolf) heulen::V
blow (with mouth) blow (using the mouth) blasen::V
whistle whistle (using the mouth) pfeifen::V
shout shout (of human) schreien::V
groan groan (e.g. in pain) stöhnen::V
tremble tremble (e.g. with fear) zittern::V
be alive live (be alive) leben::V
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be born be born (of human) geboren werden::V
breathe breathe (of human) atmen::V
drink drink (of human) trinken::V
eat eat (of human) essen::V
swallow swallow (e.g. food) schlucken::V
get tired get tired müde werden::V
fall asleep fall asleep einschlafen::V
sleep sleep schlafen::V
wake up wake up aufwachen::V
arise (from sleep) get up (rise from one’s bed) aufstehen::V
rest relax (recreate) sich erholen::V
become sick fall ill krank werden::V
be ill be ill krank sein::V
ache ache (e.g. of head) schmerzen::V
cough cough husten::V
recover recover (from an illness) genesen::V
die die (of human) sterben::V
perish (of human) perish (die violently) umkommen::V
move (of person) move (change place) sich bewegen::V
budge budge (change posture) sich rühren::V
stand up stand up (e.g. from a chair) sich erheben::V
sit down sit down (assume sitting position) sich setzen::V
tumble tumble (fall end over end) hinfallen::V
walk walk (move on the feet) laufen::V
step (verb) step (move the foot in walking) schreiten::V
take a walk take a walk spazierengehen::V
move in haste rush (move in haste) eilen::V
hurry up hurry (do things quickly) sich beeilen::V
dash (of vehicle) dash (e.g. of a vehicle) sausen::V
run run (of human) rennen::V
jump jump (of human) springen::V
climb climb (of human) klettern::V
seesaw (action) seesaw (use a seesaw) schaukeln::V
crawl creep (of human) kriechen::V
swim swim (of human) schwimmen::V
dive dive (of human) tauchen::V
row row (propel a boat using oars) rudern::V
drive drive (travel by a vehicle) fahren::V
fly (move through air) fly (e.g. of bird) fliegen::V
go go (move through space) gehen::V
leave go away (leave a place) weggehen::V
depart depart (set out on a journey) abfahren::V
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Concept Gloss and Explanation Internal ID
stop (of movement) stop (cease moving) anhalten::V
go inside go in (go into an enclosed space) hineingehen::V
enter enter (e.g. a building, a room) eintreten::V
come come (move here) kommen::V
arrive arrive (reach one’s destination) ankommen::V
come back come back (return to a place) zurückkommen::V
remain stay (remain in a place) bleiben::V
wait (for) wait (delay action until sth. happens) warten::V
await await (wait for someone) erwarten::V
look for look for (seek, attempt to find) suchen::V
find find (locate something searched for) finden::V
try try (attempt) versuchen::V
prepare prepare (make ready, set up) vorbereiten::V
love love (have a strong affection for) lieben::V
like like (favor, be in favor of) mögen::V
laugh laugh lachen::V
move emotionally move (arouse the feelings of) rühren::V
cry weep, cry (shed tears) weinen::V
grumble grumble (complain in surly manner) schimpfen::V
be annoyed be annoyed (be irritated) sich ärgern::V
be afraid be afraid (be frightened) sich fürchten::V
fear (be afraid) be afraid of (fear) fürchten::V
flee flee (run away) fliehen::V
escape escape (e.g. from captivity) flüchten::V
see see (perceive with the eyes) sehen::V
look look at (turn the eyes toward) anschauen::V
watch watch (for period of time, e.g. movie) ansehen::V
hear hear (perceive with the ears) hören::V
listen listen (pay attention to speech) zuhören::V
taste (something) taste (sample the flavor of) probieren::V
smell (perceive) smell (sense the smell of) riechen::V
feel (tactually) feel (sense) fühlen::V
seem seem (appear, be perceived as) scheinen::V
visible show (be visible) zu sehen sein::V
hear (information) hear (receive information about) vernehmen::V
shiver be cold (feel sensation of coldness) frieren::V
do do (e.g. “what are you doing?”) tun::V
be able can (be able to) können::V
want want (desire) wollen::V
begin start (initiate, e.g. a quarrel) anfangen::V
finish finish (e.g. a piece of work) beenden::V
stop (of activity) stop (stop the current activity) aufhören::V
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succeed succeed (be successful) gelingen::V
result in turn out (result, end up) geraten::V
open open (e.g. a window) öffnen::V
shut close (e.g. a window) schließen::V
put put (in upright position, e.g. a glass) stellen::V
cause to sit place (cause someone to sit) setzen::V
lay (verb) lay (e.g. money onto a table) legen::V
touch touch (make physical contact with) berühren::V
connect connect (join, e.g. using strings) verbinden::V
cover cover (e.g. a boat using a canvas) bedecken::V
hang up hang up (e.g. a picture) aufhängen::V
light (ignite) light (e.g. a candle) anzünden::V
pick up pick up (from the floor) aufheben::V
leave (something) leave (e.g. a coat at home) zurücklassen::V
lose (something) lose (e.g. a key) verlieren::V
drop (something) drop (let fall from one’s hands) fallen lassen::V
make make (create, bring about) machen::V
produce produce (manufacture) herstellen::V
build build (e.g. a house) bauen::V
repair repair, mend (e.g. a car) reparieren::V
improve (something) improve (make better) verbessern::V
change alter (make different) ändern::V
dig dig (in earth) graben::V
bend bow (e.g. the arm) beugen::V
bend (something) bend (e.g. a pipe) biegen::V
turn (something) spin (e.g. a skewer) drehen::V
flip turn over (e.g. pancake, piece of meat) wenden::V
turn around (something) turn, turn around (e.g. palm) umdrehen::V
raise raise (e.g. one’s hand) heben::V
lift lift (e.g. a box) hochheben::V
grasp seize (grab, e.g. a knife) ergreifen::V
hold hold (in one’s hands) halten::V
press press (exert weight or force against) drücken::V
push push (shove, e.g. a box) schieben::V
scrape scrape (e.g. a plate using a knife) kratzen::V
lick lick (e.g. a wound) lecken::V
bite bite (e.g. a child, of a dog) beißen::V
tear (shred) tear off (e.g. a doll’s arm) abreißen::V
cut off cut off (e.g. a piece of cake) abschneiden::V
tie tie (e.g. using a rope) binden::V
stick (something) stick (e.g. a twig into a hole) stecken::V
get destroyed break (e.g. a bone) brechen::V
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knock knock (e.g. on a wall) klopfen::V
hit hit (on purpose, e.g. a table) hauen::V
glue (something) glue (e.g. a poster to a wall) kleben::V
rub rub (e.g. glass with a rag) reiben::V
spread (something) spread (e.g. fat on a surface) streichen::V
sharpen (something) sharpen (e.g. a knife) schleifen::V
cut cut (e.g. paper) schneiden::V
jog jog (e.g. on a door) rütteln::V
shake shake (e.g. a bottle) schütteln::V
swing (something) swing (e.g. a flag, cloth) schwenken::V
pour pour (e.g. water into a glass) schütten::V
fill fill (e.g. a glass with water) füllen::V
wrap wrap (e.g. a fish in paper) einwickeln::V
carry carry (e.g. a box) tragen::V
drag drag (e.g. the trunk of a tree) schleppen::V
pull pull (e.g. a rope) ziehen::V
keep keep (e.g. food, money) aufbewahren::V
throw throw (e.g. a ball) werfen::V
catch catch (e.g. a ball) fangen::V
grab (something) grab (e.g. someone’s arm) packen::V
hide (conceal) hide verstecken::V
divide divide (split into parts) teilen::V
send send (e.g. a letter) schicken::V
bring bring bringen::V
add add hinzufügen::V
get get (obtain, e.g. important item) bekommen::V
receive receive (be given) erhalten::V
take take nehmen::V
choose choose wählen::V
select select auswählen::V
preserve preserve bewahren::V
hinder hinder behindern::V
spoil (somebody or something) spoil (e.g. the mood) verderben::V
damage damage (e.g. a house, a vehicle) beschädigen::V
break (cleave) break (e.g. a plate) zerbrechen::V
shred tear (e.g. a cloth) zerreißen::V
destroy destroy (e.g. a village) zerstören::V
burn (something) burn (e.g. paper, wood) verbrennen::V
give give geben::V
pass (something) hand (e.g. salt at table) reichen::V
donate give (as a present, e.g. a book) schenken::V
promise promise versprechen::V
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wish (someone something) wish (e.g. luck) wünschen::V
praise praise loben::V
kiss kiss küssen::V
rock (a child) rock (a child) wiegen::V
cover (a child) cover (e.g. a child with a blanket) zudecken::V
wake wake wecken::V
show show zeigen::V
guide (to destination) guide (e.g. to one’s destination) führen::V
teach teach (e.g. to swim, to sew) lehren::V
instruct instruct (e.g. children) unterrichten::V
raise (a child) bring up (raise, e.g. a child) aufziehen::V
lead (guide) lead leiten::V
urge (someone) urge antreiben::V
cause someone to let lassen::V
invite invite (to one’s place) einladen::V
join unite vereinigen::V
visit visit (e.g. a friend) besuchen::V
encounter meet (someone) treffen::V
meet assemble (of a group) sich versammeln::V
play play (e.g. of children) spielen::V
sing sing singen::V
dance dance tanzen::V
part ways separate (part ways) sich trennen::V
leave (someone) leave (someone) verlassen::V
rescue rescue (someone) retten::V
guard (someone) guard (e.g. a building) bewachen::V
protect protect (a person) schützen::V
defend defend (e.g. city, state) verteidigen::V
brawl brawl sich schlagen::V
shoot shoot (e.g. with a gun) schießen::V
win win siegen::V
annoy annoy ärgern::V
beat beat (someone) schlagen::V
kick kick (someone, a dog) treten::V
sting sting (e.g. with a needle) stechen::V
shove (someone) shove (someone) stoßen::V
steal steal stehlen::V
disturb (someone) disturb stören::V
bother bother belästigen::V
conceal conceal (e.g. a fact) verbergen::V
deceive deceive täuschen::V
betray cheat (e.g. someone of money) betrügen::V
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kill kill töten::V
dwell (live, reside) dwell wohnen::V
work (activity) work arbeiten::V
gather gather (e.g. mushrooms, berries) sammeln::V
pick pick (e.g. an apple) pflücken::V
hunt hunt jagen::V
catch fish fish (catch fish) fischen::V
catch (an animal) catch (an animal) fassen::V
herd (cattle) herd (cattle) hüten::V
drive (cattle) drive (cattle) treiben::V
tie up tie up (an animal) anbinden::V
feed feed (an animal) füttern::V
draw milk milk (a cow) melken::V
chop chop (e.g. kale) hacken::V
water (a plant) water (e.g. flowers) gießen::V
ripen ripen (of a plant, of a fruit) reifen::V
cook (something) cook (e.g. a meal) zubereiten::V
boil (something) boil (e.g. vegetables) kochen::V
bake bake (e.g. bread, a cake) backen::V
fry fry (e.g. meat) braten::V
stir (something) stir (e.g. soup) umrühren::V
knit knit (e.g. a jacket) stricken::V
sew sew nähen::V
dye dye (e.g. hair) färben::V
clean (something) clean (e.g. using a brush) reinigen::V
wash wash (e.g. clothes) waschen::V
wipe wipe abwischen::V
rinse rinse (e.g. clothes, dishes) spülen::V
sweep sweep (e.g. a room) fegen::V
sweep (something) sweep (e.g. leaves) kehren::V
bathe bath (e.g. in a river) baden::V
wash (oneself) wash sich waschen::V
take off take off (e.g. one’s coat) ausziehen::V
put on put on (e.g. one’s coat) anziehen::V
dress up get dressed sich anziehen::V
comb (verb) comb kämmen::V
decorate decorate (e.g. a house) schmücken::V
say say sagen::V
speak speak sprechen::V
talk (to someone) talk reden::V
chat (activity) chat sich unterhalten::V
ask (inqire) ask fragen::V
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ask (reqest) request bitten::V
tell tell erzählen::V
convey (a message) convey mitteilen::V
call by name name (give a name to) nennen::V
call call (someone to come) rufen::V
boast brag prahlen::V
translate translate (e.g. text) übersetzen::V
think (reflect) think denken::V
believe believe glauben::V
notice notice bemerken::V
recognize recognize erkennen::V
understand grasp (understand meaning of) begreifen::V
understand (acoustically) understand (acoustically, e.g. call) verstehen::V
learn learn (e.g. to sew) lernen::V
know (something) know (be aware of) wissen::V
remember remember (recall from memory) sich erinnern an::V
forget forget (lose remembrance of) vergessen::V
measure measure (e.g. height of sth.) messen::V
count count (determine number of) zählen::V
calculate calculate (reckon) rechnen::V
read read (e.g. a book) lesen::V
painting paint (e.g. a picture) malen::V
draw (with pen) draw (e.g. a line) zeichnen::V
write write (e.g. a letter) schreiben::V
own own (possess) besitzen::V
buy buy (e.g. goods) kaufen::V
sell sell (e.g. goods) verkaufen::V
pay for pay for (e.g. goods) bezahlen::V
pay pay (e.g. in a restaurant) zahlen::V
rule rule (e.g. country) beherrschen::V
endure endure (e.g. pain) ertragen::V

Figure A.4: List of the 1,016 concepts contained in NorthEuraLex 0.9
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Appendix B: Intermediate results

B.1 Inferred cognacy overlaps

In this section, I provide an overivew of all cognacy overlaps beyond 3% of con-
cepts. For every language, the other languages are sorted by the size of their
overlap, making it possible to look up how closely related each pair of languages
is inferred to be, and proving that automated cognacy detection on 1,016 concepts
gives a rather fine-grained picture of lexical relatedness. Note that this number
also corresponds to the unconditionedmutual information 𝑖(𝑋 ; 𝑌 ) resulting from
my information measure.

language neighbors by amount of overlap (in percent of shared cognates)
fin krl (69), olo (60), vep (50), ekk (44), liv (30), smn (26), sme (22), sms (20),

smj (18), sjd (14), sma (14), myv (8), mdf (8), mhr (6), kpv (5), koi (5), isl (5),
swe (5), kca (5), udm (4), mrj (4), nor (4), dan (4), deu (3), hun (3), mns (3),
lav (3), nld (3), lit (3), eng (3)

krl olo (69), fin (69), vep (58), ekk (41), liv (30), smn (22), sms (21), sme (20),
sjd (16), smj (15), sma (12), myv (8), mdf (8), mhr (6), kpv (5), koi (5), udm (5),
mrj (5), kca (5), mns (4), hun (4), isl (4), rus (3), swe (3), ukr (3), lav (3),
bel (3), hrv (3), deu (3), slk (3), sel (3), nor (3)

olo krl (69), vep (67), fin (60), ekk (39), liv (30), sms (21), smn (20), sme (18),
sjd (17), smj (14), sma (11), myv (10), mdf (9), rus (9), koi (9), mrj (8), mhr (7),
kpv (7), ukr (7), bel (6), udm (6), kca (5), itl (5), bul (5), hrv (5), slk (5),
pol (5), mns (5), slv (4), sel (4), ces (4), lav (4), hun (4), lit (4), ron (3),
yrk (3), enf (3), sah (3), isl (3), deu (3), evn (3)

vep olo (67), krl (58), fin (50), ekk (36), liv (30), sms (19), smn (18), sjd (17),
sme (16), smj (14), sma (11), myv (9), mdf (9), kpv (7), koi (7), mhr (6), mrj (6),
udm (6), rus (5), kca (5), mns (5), bel (4), hun (4), ukr (4), lav (4), sel (4),
hrv (4), slk (4), bul (3), lit (3), pol (3), yrk (3), slv (3), itl (3), isl (3),
ron (3), ces (3)

ekk fin (44), liv (44), krl (41), olo (39), vep (36), smn (17), sms (17), sme (15),
sjd (15), smj (13), sma (11), myv (8), mdf (6), mhr (6), koi (6), deu (6), lav (6),
mrj (5), isl (5), hun (5), nld (5), swe (5), dan (5), mns (5), nor (5), udm (5),
kpv (5), kca (4), rus (4), itl (3), slk (3), eng (3), hrv (3), ron (3), ita (3),
bul (3), spa (3), yrk (3), slv (3), por (3), bel (3), fra (3), cat (3)
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language neighbors by amount of overlap (in percent of shared cognates)
liv ekk (44), fin (30), krl (30), olo (30), vep (30), smn (14), sms (14), sjd (14),

sme (13), smj (12), sma (10), myv (10), lav (9), mdf (9), mhr (7), koi (7), deu (7),
kpv (6), dan (6), mrj (6), nor (6), swe (5), nld (5), mns (5), isl (5), udm (5),
kca (5), rus (4), hun (4), slk (4), eng (4), lit (3), yrk (3), hrv (3), bel (3),
bul (3), sel (3), ita (3), itl (3), cat (3), fra (3), slv (3), pol (3), ron (3),
spa (3), ukr (3), ces (3), enf (3), por (3), hin (3)

sma smj (42), sme (40), smn (33), sms (30), sjd (24), fin (14), krl (12), olo (11),
vep (11), ekk (11), nor (10), liv (10), swe (10), dan (9), isl (8), mrj (6), deu (6),
mhr (5), nld (5), mdf (5), myv (5), eng (4), kca (4), kpv (4), udm (4), koi (4),
mns (4), hun (3), lav (3)

smj sme (54), smn (47), sma (42), sms (38), sjd (28), fin (18), krl (15), olo (14),
vep (14), ekk (13), liv (12), nor (9), swe (8), dan (8), isl (8), mdf (6), deu (6),
myv (6), mrj (6), nld (6), mhr (5), udm (5), koi (4), kpv (4), eng (4), kca (4),
mns (3), hun (3), lav (3)

sme smn (60), smj (54), sms (47), sma (40), sjd (32), fin (22), krl (20), olo (18),
vep (16), ekk (15), liv (13), nor (7), swe (6), mdf (6), dan (6), myv (6), isl (6),
mrj (5), mhr (5), deu (5), nld (5), udm (4), koi (4), kca (4), kpv (4), mns (3),
hun (3), eng (3), lav (3), sel (3)

smn sme (60), sms (57), smj (47), sjd (36), sma (33), fin (26), krl (22), olo (20),
vep (18), ekk (17), liv (14), mdf (7), myv (6), mrj (5), kpv (5), mhr (5), udm (5),
isl (5), nor (4), kca (4), koi (4), swe (4), dan (4), mns (4), hun (3), deu (3),
lav (3), nld (3)

sms smn (57), sme (47), sjd (47), smj (38), sma (30), krl (21), olo (21), fin (20),
vep (19), ekk (17), liv (14), myv (8), mdf (8), mhr (6), mrj (6), koi (6), kca (6),
kpv (6), rus (5), udm (5), mns (5), bel (5), ukr (4), sel (4), hun (4), hrv (4),
swe (4), slk (4), bul (4), isl (4), pol (4), slv (3), ces (3), nor (3), dan (3),
itl (3), lav (3), deu (3), niv (3)

sjd sms (47), smn (36), sme (32), smj (28), sma (24), vep (17), olo (17), krl (16),
ekk (15), fin (14), liv (14), myv (11), mdf (9), koi (9), rus (8), mrj (8), mhr (7),
mns (7), kpv (7), kca (7), itl (6), udm (6), slv (5), hun (5), bul (5), slk (5),
hrv (5), bel (4), ukr (4), sel (4), ket (4), ess (4), ale (4), isl (4), lav (4),
pol (4), gld (3), evn (3), swe (3), yrk (3), ces (3), bua (3), dan (3), deu (3),
eng (3), uzn (3), hin (3), tat (3), nor (3), lat (3), ron (3), pbu (3), cat (3),
nld (3), xal (3), niv (3), enf (3), lez (3), bak (3), tam (3)

mrj mhr (59), chv (12), myv (10), koi (9), rus (9), mdf (8), udm (8), olo (8), sjd (8),
kpv (7), bak (7), tat (7), vep (6), sms (6), uzn (6), liv (6), sma (6), smj (6),
bul (5), ekk (5), ukr (5), bel (5), sme (5), smn (5), azj (5), hrv (5), itl (5),
mns (5), hun (5), krl (5), kca (5), slk (5), fin (4), pol (4), slv (4), kaz (4),
sah (4), tur (3), ces (3), lez (3), ale (3), che (3), ell (3), ron (3), sel (3),
gld (3), oss (3), xal (3), dar (3), ket (3), lav (3), ess (3)

mhr mrj (59), chv (13), myv (11), udm (10), tat (10), bak (10), koi (9), mdf (9),
kpv (8), olo (7), liv (7), sjd (7), uzn (7), sms (6), vep (6), kaz (6), ekk (6),
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B.1 Inferred cognacy overlaps

language neighbors by amount of overlap (in percent of shared cognates)
krl (6), rus (6), azj (6), fin (6), hun (5), sma (5), smj (5), sme (5), smn (5),
mns (5), kca (5), itl (4), sel (4), sah (4), tur (4), bul (4), lez (4), ukr (3),
bua (3), slk (3), gld (3), hrv (3), xal (3), bel (3), slv (3), che (3), pbu (3),
yrk (3), ale (3), ddo (3), pes (3), ron (3), ket (3), hye (3), evn (3), lav (3)

mdf myv (70), sjd (9), olo (9), vep (9), mhr (9), liv (9), mrj (8), sms (8), fin (8),
krl (8), koi (7), smn (7), kpv (6), ekk (6), smj (6), sme (6), udm (6), rus (6),
sma (5), kca (5), sel (5), ukr (5), mns (5), bel (4), bul (4), hrv (3), itl (3),
pol (3), hun (3), ces (3), slv (3), chv (3), slk (3), yrk (3), ron (3), tat (3)

myv mdf (70), mhr (11), sjd (11), olo (10), liv (10), mrj (10), vep (9), rus (9),
sms (8), krl (8), fin (8), ekk (8), koi (8), udm (7), kpv (6), smn (6), itl (6),
sel (6), sme (6), smj (6), ukr (6), mns (6), bel (6), kca (5), bul (5), hrv (5),
hun (5), slk (5), sma (5), slv (5), pol (4), ces (4), sah (4), chv (4), yrk (4),
tat (3), ron (3), bak (3), ess (3), evn (3), ale (3), uzn (3), ket (3), lav (3),
enf (3), bua (3), pbu (3), gld (3), xal (3), ykg (3), ava (3), lit (3), spa (3),
yux (3), che (3), azj (3)

udm kpv (37), koi (31), mhr (10), mrj (8), kca (7), myv (7), olo (6), vep (6), mdf (6),
sjd (6), sms (5), krl (5), chv (5), smn (5), liv (5), smj (5), bak (5), ekk (5),
mns (5), tat (5), rus (5), fin (4), sel (4), hun (4), sme (4), sma (4), bel (4),
ukr (4), yrk (3), sah (3), uzn (3), lez (3), bul (3), kaz (3), itl (3), azj (3),
nio (3)

koi kpv (58), udm (31), rus (14), mrj (9), bel (9), mhr (9), kca (9), bul (9), olo (9),
sjd (9), slk (8), ukr (8), mns (8), myv (8), pol (8), hrv (7), vep (7), liv (7),
mdf (7), slv (7), itl (7), ces (6), sms (6), ekk (6), krl (5), sel (5), fin (5),
yrk (5), smj (4), smn (4), chv (4), hun (4), sme (4), evn (4), lav (4), ron (4),
sah (4), enf (4), sma (4), ket (3), gld (3), bak (3), dar (3), hin (3), lez (3),
por (3), azj (3), spa (3), tat (3), pes (3), ava (3), ess (3), bua (3), nio (3),
nld (3), ykg (3), cat (3), ita (3), swe (3)

kpv koi (58), udm (37), kca (9), mhr (8), olo (7), mrj (7), mns (7), vep (7), rus (7),
sjd (7), liv (6), myv (6), mdf (6), sms (6), krl (5), fin (5), ukr (5), bel (5),
smn (5), sel (5), ekk (5), smj (4), itl (4), pol (4), bul (4), sma (4), sme (4),
slv (4), hun (4), slk (3), ces (3), yrk (3), hrv (3), enf (3), nio (3), niv (3),
lav (3), sah (3), oss (3)

hun slk (6), kca (5), mhr (5), sjd (5), mns (5), ekk (5), myv (5), slv (5), mrj (5),
hrv (5), rus (5), vep (4), ces (4), sms (4), udm (4), bul (4), liv (4), koi (4),
ron (4), pol (4), olo (4), krl (4), ukr (4), uzn (4), kpv (4), bel (4), itl (3),
smn (3), azj (3), smj (3), sma (3), mdf (3), fin (3), sme (3), bak (3), tat (3),
nld (3), chv (3), ale (3), deu (3), dan (3), tur (3), oss (3), nor (3), lat (3),
ket (3), sel (3), eng (3)

kca mns (32), kpv (9), koi (9), udm (7), sel (7), sjd (7), sms (6), hun (5), olo (5),
myv (5), vep (5), mdf (5), liv (5), krl (5), mhr (5), mrj (5), fin (5), yrk (4),
ekk (4), smn (4), sma (4), sme (4), smj (4), chv (3), ykg (3), itl (3), rus (3),
bul (3), bel (3), ukr (3), pol (3), ces (3), nio (3), sah (3)
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B Intermediate results

language neighbors by amount of overlap (in percent of shared cognates)
mns kca (32), koi (8), kpv (7), sjd (7), sel (6), myv (6), itl (5), sms (5), hun (5),

liv (5), rus (5), ekk (5), mhr (5), mrj (5), udm (5), mdf (5), olo (5), vep (5),
yrk (4), bul (4), krl (4), smn (4), sma (4), smj (3), sme (3), ket (3), fin (3),
ron (3), ess (3), nio (3), slv (3), hrv (3), lat (3), ukr (3), slk (3), evn (3),
ita (3), chv (3), por (3), bel (3), spa (3), ykg (3), gld (3), lav (3), pol (3),
ale (3), sah (3), cat (3)

sel yrk (12), nio (10), enf (8), kca (7), mns (6), rus (6), myv (6), koi (5), kpv (5),
mdf (5), udm (4), bul (4), olo (4), sms (4), mhr (4), sjd (4), vep (4), itl (4),
bel (4), hrv (4), ukr (4), sah (4), ces (4), niv (3), liv (3), slk (3), slv (3),
evn (3), ket (3), pol (3), mrj (3), ess (3), ykg (3), hun (3), krl (3), sme (3),
xal (3)

yrk enf (28), nio (18), sel (12), koi (5), kca (4), mns (4), itl (4), rus (4), myv (4),
kpv (3), udm (3), liv (3), vep (3), sjd (3), olo (3), ukr (3), bul (3), mhr (3),
ekk (3), slv (3), evn (3), mdf (3), bel (3), ykg (3), niv (3)

enf yrk (28), nio (14), sel (8), rus (4), koi (4), hrv (3), olo (3), slv (3), myv (3),
evn (3), kpv (3), slk (3), ukr (3), itl (3), bel (3), bul (3), liv (3), sjd (3)

nio yrk (18), enf (14), sel (10), evn (3), mns (3), kpv (3), koi (3), udm (3), kca (3),
ykg (3)

ykg yux (21), rus (3), sah (3), evn (3), kca (3), itl (3), mns (3), myv (3), sel (3),
hrv (3), koi (3), ukr (3), yrk (3), nio (3)

yux ykg (21), myv (3)
ben hin (37), tel (10), mal (9), kan (9), pbu (7), pes (7), por (5), bul (4), spa (4),

kmr (4), eng (4), cat (4), ron (4), tam (4), hrv (4), slk (4), ell (4), lat (4),
oss (4), ita (3), rus (3), fra (3), cym (3), lav (3), slv (3), bre (3), gle (3),
nld (3), bel (3), itl (3), dar (3), sqi (3), bsk (3), dan (3), hye (3), nor (3)

hin ben (37), pes (16), pbu (15), kan (15), tel (13), mal (12), bsk (9), kmr (9),
tam (6), lez (6), arb (6), eng (5), uzn (5), bul (5), azj (5), oss (5), lat (5),
cat (5), rus (5), ron (4), hye (4), spa (4), por (4), tur (4), slv (4), ita (4),
slk (4), dar (4), hrv (4), deu (4), che (4), cym (4), fra (4), ell (4), bre (4),
ddo (4), ava (4), sqi (3), ady (3), nld (3), bel (3), tat (3), lav (3), pol (3),
kaz (3), lit (3), nor (3), ces (3), koi (3), swe (3), isl (3), sjd (3), ukr (3),
dan (3), bak (3), itl (3), gle (3), chv (3), liv (3)

pbu pes (24), hin (15), kmr (10), azj (10), uzn (9), lez (9), arb (9), ben (7), tur (7),
bsk (7), tat (6), dar (6), ava (5), bak (5), lbe (5), kaz (5), oss (5), ddo (5),
che (4), ell (3), por (3), ron (3), eng (3), bul (3), ady (3), hye (3), chv (3),
rus (3), heb (3), myv (3), mhr (3), sjd (3), hrv (3), cat (3), dan (3), nor (3),
fra (3), lav (3), spa (3), itl (3), deu (3), nld (3), tam (3), tel (3)

pes pbu (24), kmr (18), hin (16), azj (15), uzn (13), arb (13), lez (10), tur (10),
tat (7), ben (7), bsk (6), bak (6), kaz (6), dar (6), lbe (6), ava (5), oss (5),
hye (4), ddo (4), fra (4), bul (3), ron (3), cat (3), eng (3), por (3), spa (3),
che (3), koi (3), kat (3), heb (3), chv (3), hrv (3), slk (3), rus (3), mhr (3),
ita (3), sqi (3), lat (3)
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B.1 Inferred cognacy overlaps

language neighbors by amount of overlap (in percent of shared cognates)
kmr pes (18), pbu (10), hin (9), tur (8), azj (7), uzn (7), lez (6), tat (5), ben (4),

arb (4), kaz (4), oss (4), bsk (4), sqi (4), bak (4), lbe (3), hye (3), che (3),
ava (3), dar (3), ron (3), bul (3)

oss pes (5), pbu (5), hin (5), rus (5), ava (4), slk (4), kmr (4), ady (4), che (4),
dar (4), bul (4), lez (4), ben (4), slv (4), chv (3), ron (3), uzn (3), abk (3),
itl (3), ces (3), bel (3), bak (3), azj (3), ell (3), heb (3), pol (3), hrv (3),
deu (3), eng (3), mrj (3), hun (3), tat (3), kpv (3), lat (3), ukr (3)

hye hin (4), kat (4), pes (4), abk (4), kmr (3), azj (3), spa (3), pbu (3), eng (3),
por (3), deu (3), ell (3), lav (3), dar (3), nor (3), lez (3), ita (3), mhr (3),
ron (3), uzn (3), ben (3), lat (3)

ell ita (9), lat (8), spa (7), por (7), ron (7), cat (7), fra (5), bul (5), sqi (5),
eng (5), hrv (4), lav (4), slk (4), bre (4), slv (4), rus (4), lit (4), deu (4),
ben (4), hin (4), nld (4), pbu (3), swe (3), nor (3), dan (3), oss (3), mrj (3),
ces (3), hye (3), bel (3), gle (3), isl (3), pol (3), lez (3), ukr (3), eus (3),
che (3)

sqi ron (10), ita (8), por (8), lat (7), cat (7), spa (7), fra (7), bul (5), ell (5),
cym (5), eng (5), bre (5), hrv (4), tur (4), gle (4), kmr (4), slk (4), hin (3),
rus (3), azj (3), deu (3), nor (3), eus (3), dan (3), ces (3), slv (3), bel (3),
swe (3), nld (3), ukr (3), lav (3), lit (3), ben (3), dar (3), uzn (3), pes (3),
pol (3)

bul hrv (56), rus (54), slv (49), slk (46), bel (45), ces (44), ukr (44), pol (43),
lit (12), ron (12), lav (11), itl (11), koi (9), deu (6), ita (6), nld (6), mrj (5),
sqi (5), cat (5), eng (5), ell (5), hin (5), olo (5), por (5), myv (5), lat (5),
swe (5), sjd (5), spa (5), dan (5), nor (5), sah (5), ale (5), ben (4), sel (4),
isl (4), ket (4), ess (4), fra (4), hun (4), kpv (4), evn (4), mdf (4), gld (4),
mns (4), oss (4), mhr (4), sms (4), uzn (3), pes (3), vep (3), bre (3), cym (3),
azj (3), lez (3), chv (3), liv (3), pbu (3), tur (3), kca (3), kmr (3), udm (3),
yrk (3), ekk (3), enf (3), dar (3), ava (3), bua (3)

hrv slv (61), bul (56), rus (51), slk (49), bel (47), ces (46), ukr (45), pol (44),
lit (11), itl (10), ron (10), lav (9), koi (7), deu (6), dan (5), myv (5), nld (5),
cat (5), swe (5), nor (5), ita (5), lat (5), por (5), mrj (5), olo (5), spa (5),
hun (5), eng (5), sjd (5), ell (4), sqi (4), ale (4), isl (4), vep (4), hin (4),
sel (4), ben (4), sah (4), sms (4), fra (4), mdf (3), evn (3), kpv (3), ket (3),
gld (3), liv (3), enf (3), mns (3), mhr (3), cym (3), ekk (3), oss (3), ess (3),
ava (3), krl (3), pes (3), dar (3), pbu (3), ddo (3), xal (3), ykg (3)

slv hrv (61), slk (51), bul (49), ces (47), rus (47), pol (42), bel (42), ukr (42),
lit (12), lav (11), itl (9), ron (9), koi (7), deu (6), ita (6), por (5), spa (5),
sjd (5), lat (5), hun (5), nld (5), cat (5), swe (5), dan (5), myv (5), nor (5),
isl (4), hin (4), olo (4), eng (4), mrj (4), ell (4), ale (4), ket (4), evn (4),
kpv (4), oss (4), sms (3), sah (3), sel (3), mdf (3), vep (3), ben (3), fra (3),
liv (3), mns (3), enf (3), sqi (3), gld (3), mhr (3), bre (3), yrk (3), cym (3),
ekk (3), ess (3)
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B Intermediate results

language neighbors by amount of overlap (in percent of shared cognates)
slk ces (79), pol (57), bel (53), ukr (52), slv (51), rus (50), hrv (49), bul (46),

lit (12), lav (11), itl (9), koi (8), ron (8), deu (7), hun (6), nld (5), dan (5),
swe (5), myv (5), nor (5), sjd (5), ita (5), eng (5), olo (5), mrj (5), por (4),
lat (4), hin (4), oss (4), cat (4), spa (4), ell (4), isl (4), ale (4), ben (4),
sqi (4), sms (4), liv (4), vep (4), kpv (3), sah (3), evn (3), ekk (3), sel (3),
gld (3), bre (3), mhr (3), fra (3), cym (3), mns (3), ket (3), mdf (3), enf (3),
pes (3), krl (3), dar (3), ava (3), ess (3)

ces slk (79), pol (53), ukr (48), bel (47), slv (47), hrv (46), rus (46), bul (44),
lit (13), lav (11), itl (7), ron (7), koi (6), deu (5), myv (4), hun (4), nld (4),
olo (4), ita (4), dan (4), swe (4), nor (4), sel (4), eng (4), kpv (3), sms (3),
por (3), cat (3), mdf (3), mrj (3), sjd (3), lat (3), hin (3), oss (3), spa (3),
sqi (3), sah (3), ell (3), fra (3), liv (3), cym (3), kca (3), ale (3), isl (3),
vep (3)

pol bel (61), ukr (58), slk (57), ces (53), rus (50), hrv (44), bul (43), slv (42),
lit (12), lav (11), itl (8), koi (8), ron (7), deu (6), nld (5), olo (5), myv (4),
swe (4), nor (4), mrj (4), kpv (4), dan (4), ita (4), hun (4), por (4), spa (4),
eng (4), lat (4), cat (4), sms (4), sah (4), sjd (4), mdf (3), vep (3), hin (3),
isl (3), liv (3), sel (3), oss (3), ale (3), bre (3), kca (3), ell (3), mns (3),
fra (3), gle (3), sqi (3)

ukr bel (77), rus (65), pol (58), slk (52), ces (48), hrv (45), bul (44), slv (42),
lit (13), lav (11), itl (9), koi (8), ron (7), olo (7), myv (6), kpv (5), mrj (5),
sah (5), deu (5), mdf (5), sms (4), swe (4), nld (4), sjd (4), vep (4), ale (4),
nor (4), sel (4), dan (4), hun (4), udm (4), ket (4), evn (3), isl (3), ita (3),
lat (3), eng (3), cat (3), mhr (3), krl (3), por (3), spa (3), liv (3), mns (3),
hin (3), yrk (3), kca (3), sqi (3), enf (3), gle (3), ykg (3), cym (3), ell (3),
oss (3)

bel ukr (77), rus (68), pol (61), slk (53), ces (47), hrv (47), bul (45), slv (42),
lit (12), lav (11), koi (9), itl (9), ron (7), olo (6), myv (6), mrj (5), kpv (5),
sms (5), sah (5), deu (5), sjd (4), mdf (4), swe (4), vep (4), ita (4), sel (4),
nld (4), nor (4), ale (4), udm (4), dan (4), hun (4), por (4), hin (3), lat (3),
spa (3), cat (3), liv (3), eng (3), evn (3), isl (3), oss (3), ket (3), krl (3),
mhr (3), sqi (3), kca (3), ben (3), mns (3), gld (3), enf (3), ell (3), yrk (3),
ekk (3)

rus bel (68), ukr (65), bul (54), hrv (51), pol (50), slk (50), slv (47), ces (46),
itl (14), lit (14), koi (14), lav (13), mrj (9), olo (9), myv (9), ron (8), sjd (8),
sah (8), kpv (7), sel (6), mdf (6), evn (6), mhr (6), sms (5), vep (5), deu (5),
ale (5), swe (5), ket (5), mns (5), ita (5), udm (5), hun (5), nld (5), nor (5),
oss (5), cat (5), hin (5), ess (4), dan (4), eng (4), lat (4), chv (4), por (4),
spa (4), gld (4), enf (4), liv (4), isl (4), yrk (4), bua (4), ell (4), xal (4),
ekk (4), ben (3), ykg (3), krl (3), lez (3), sqi (3), tat (3), ava (3), bak (3),
dar (3), kca (3), fra (3), pbu (3), niv (3), bre (3), pes (3), gle (3)

lit lav (40), rus (14), ukr (13), ces (13), bul (12), pol (12), slv (12), slk (12),
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B.1 Inferred cognacy overlaps

language neighbors by amount of overlap (in percent of shared cognates)
bel (12), hrv (11), lat (5), eng (5), nor (4), dan (4), swe (4), isl (4), ron (4),
ell (4), deu (4), olo (4), liv (3), cym (3), nld (3), vep (3), por (3), cat (3),
hin (3), ita (3), spa (3), bre (3), fin (3), sqi (3), myv (3)

lav lit (40), rus (13), slk (11), ces (11), bul (11), ukr (11), bel (11), slv (11),
pol (11), hrv (9), liv (9), deu (7), nld (6), eng (6), ekk (6), lat (6), nor (5),
dan (5), swe (5), spa (5), ron (5), isl (5), ita (5), itl (5), cat (5), por (4),
ell (4), olo (4), fra (4), vep (4), koi (4), sjd (4), bre (3), ben (3), hin (3),
smj (3), fin (3), sma (3), krl (3), myv (3), cym (3), sms (3), smn (3), sme (3),
sqi (3), kpv (3), hye (3), mns (3), pbu (3), gle (3), mrj (3), mhr (3)

isl nor (44), dan (43), swe (42), deu (29), nld (26), eng (23), sma (8), smj (8),
sme (6), ekk (5), liv (5), smn (5), fin (5), lav (5), lat (5), ita (5), por (5),
slv (4), bul (4), hrv (4), rus (4), slk (4), cat (4), spa (4), lit (4), ron (4),
fra (4), sjd (4), gle (4), krl (4), sms (4), cym (3), ukr (3), pol (3), bre (3),
bel (3), hin (3), vep (3), olo (3), ell (3), ces (3)

nor dan (86), swe (77), deu (50), nld (45), isl (44), eng (31), sma (10), smj (9),
ita (7), sme (7), spa (6), fra (6), ron (6), por (6), cat (6), liv (6), lat (6),
lav (5), hrv (5), gle (5), bul (5), slk (5), ekk (5), bre (5), rus (5), slv (5),
smn (4), cym (4), lit (4), pol (4), fin (4), ukr (4), ces (4), bel (4), sqi (3),
ell (3), hin (3), sms (3), sjd (3), hun (3), hye (3), krl (3), pbu (3), itl (3),
ben (3)

swe nor (77), dan (74), deu (49), nld (43), isl (42), eng (29), sma (10), smj (8),
ita (7), fra (7), sme (6), lat (6), cat (6), spa (6), por (6), ron (6), liv (5),
hrv (5), lav (5), rus (5), bul (5), gle (5), slk (5), ekk (5), slv (5), bre (5),
fin (5), cym (5), ukr (4), pol (4), bel (4), smn (4), lit (4), ces (4), sms (4),
krl (3), sjd (3), ell (3), hin (3), sqi (3), itl (3), koi (3)

dan nor (86), swe (74), deu (51), nld (46), isl (43), eng (29), sma (9), smj (8),
ita (7), fra (6), liv (6), spa (6), ron (6), cat (6), por (6), sme (6), lat (6),
hrv (5), lav (5), gle (5), slk (5), bul (5), ekk (5), slv (5), bre (4), rus (4),
cym (4), fin (4), pol (4), smn (4), ces (4), lit (4), ukr (4), bel (4), sjd (3),
sqi (3), ell (3), sms (3), hun (3), hin (3), pbu (3), ben (3)

deu nld (68), dan (51), nor (50), swe (49), eng (31), isl (29), ita (8), fra (7),
lav (7), slk (7), liv (7), lat (7), ron (7), hrv (6), cat (6), smj (6), spa (6),
por (6), bul (6), slv (6), ekk (6), pol (6), sma (6), rus (5), ces (5), sme (5),
cym (5), bel (5), ukr (5), bre (5), gle (5), hin (4), ell (4), lit (4), fin (3),
sqi (3), smn (3), sjd (3), hun (3), oss (3), sms (3), hye (3), eus (3), krl (3),
itl (3), olo (3), pbu (3)

nld deu (68), dan (46), nor (45), swe (43), eng (36), isl (26), ita (9), fra (8),
cat (7), por (7), spa (7), ron (7), lat (6), lav (6), bul (6), smj (6), bre (5),
sma (5), hrv (5), slk (5), cym (5), liv (5), slv (5), ekk (5), pol (5), gle (5),
rus (5), sme (5), ukr (4), ces (4), bel (4), ell (4), hin (3), lit (3), hun (3),
fin (3), smn (3), ben (3), itl (3), sqi (3), sjd (3), koi (3), eus (3), pbu (3)

eng nld (36), deu (31), nor (31), dan (29), swe (29), isl (23), fra (16), ita (15),
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B Intermediate results

language neighbors by amount of overlap (in percent of shared cognates)
cat (13), spa (13), por (13), gle (11), ron (11), cym (10), lat (9), bre (6),
lav (6), bul (5), hin (5), slk (5), sqi (5), ell (5), hrv (5), lit (5), rus (4),
sma (4), slv (4), smj (4), ben (4), mal (4), pol (4), liv (4), ces (4), eus (3),
pbu (3), ukr (3), bel (3), ekk (3), pes (3), sjd (3), sme (3), hye (3), oss (3),
fin (3), hun (3)

gle cym (12), eng (11), bre (9), cat (7), fra (7), ita (6), spa (6), lat (6), por (6),
ron (5), nor (5), dan (5), swe (5), nld (5), deu (5), sqi (4), isl (4), ben (3),
eus (3), hin (3), ukr (3), ell (3), rus (3), lav (3), pol (3)

cym bre (23), gle (12), eng (10), lat (7), cat (7), fra (7), ita (7), por (7), spa (6),
ron (6), nld (5), deu (5), sqi (5), swe (5), dan (4), nor (4), hin (4), isl (3),
lit (3), bul (3), ben (3), hrv (3), lav (3), slk (3), slv (3), eus (3), ces (3),
ukr (3)

bre cym (23), fra (14), spa (12), ita (11), cat (11), por (11), gle (9), lat (9),
ron (8), eng (6), nld (5), swe (5), nor (5), deu (5), sqi (5), dan (4), ell (4),
eus (4), hin (4), lav (3), bul (3), isl (3), slk (3), ben (3), lit (3), rus (3),
slv (3), pol (3)

lat ita (41), por (34), spa (33), cat (31), fra (27), ron (27), eng (9), bre (9),
ell (8), cym (7), sqi (7), deu (7), nld (6), swe (6), dan (6), gle (6), nor (6),
lav (6), bul (5), slv (5), hrv (5), eus (5), lit (5), hin (5), isl (5), slk (4),
rus (4), pol (4), ben (4), bel (3), ukr (3), ces (3), mns (3), sjd (3), hun (3),
oss (3), itl (3), hye (3), pes (3)

fra cat (46), ita (45), spa (38), por (37), lat (27), ron (26), eng (16), bre (14),
nld (8), cym (7), deu (7), gle (7), swe (7), sqi (7), dan (6), nor (6), ell (5),
eus (5), bul (4), lav (4), isl (4), hrv (4), hin (4), pes (4), ben (3), slk (3),
liv (3), slv (3), rus (3), ces (3), pbu (3), ekk (3), pol (3)

cat spa (60), ita (54), por (54), fra (46), ron (32), lat (31), eng (13), bre (11),
eus (8), gle (7), nld (7), cym (7), sqi (7), ell (7), deu (6), dan (6), swe (6),
nor (6), bul (5), hrv (5), slv (5), hin (5), lav (5), rus (5), slk (4), ben (4),
isl (4), pol (4), bel (3), ukr (3), ces (3), lit (3), pes (3), liv (3), itl (3),
sjd (3), pbu (3), koi (3), ekk (3), mns (3)

spa por (67), cat (60), ita (54), fra (38), lat (33), ron (30), eng (13), bre (12),
eus (8), ell (7), nld (7), sqi (7), cym (6), nor (6), dan (6), deu (6), gle (6),
swe (6), slv (5), bul (5), hrv (5), lav (5), hin (4), ben (4), rus (4), slk (4),
pol (4), isl (4), bel (3), hye (3), ukr (3), lit (3), ces (3), liv (3), pes (3),
koi (3), ekk (3), itl (3), mns (3), pbu (3), myv (3)

por spa (67), cat (54), ita (52), fra (37), lat (34), ron (30), eng (13), bre (11),
sqi (8), nld (7), ell (7), eus (7), cym (7), nor (6), deu (6), dan (6), gle (6),
swe (6), bul (5), slv (5), hrv (5), ben (5), isl (5), slk (4), hin (4), rus (4),
lav (4), pol (4), bel (4), pbu (3), ces (3), lit (3), ukr (3), koi (3), pes (3),
itl (3), hye (3), mns (3), liv (3), ekk (3), mal (3)

ita cat (54), spa (54), por (52), fra (45), lat (41), ron (33), eng (15), bre (11),
ell (9), nld (9), sqi (8), deu (8), eus (7), swe (7), nor (7), dan (7), cym (7),
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B.1 Inferred cognacy overlaps

language neighbors by amount of overlap (in percent of shared cognates)
gle (6), bul (6), slv (6), hrv (5), slk (5), rus (5), lav (5), isl (5), hin (4),
pol (4), ces (4), bel (4), ben (3), ukr (3), liv (3), lit (3), mns (3), ekk (3),
pes (3), itl (3), koi (3), hye (3)

ron ita (33), cat (32), por (30), spa (30), lat (27), fra (26), bul (12), eng (11),
sqi (10), hrv (10), slv (9), bre (8), rus (8), slk (8), bel (7), ukr (7), ell (7),
pol (7), ces (7), nld (7), deu (7), cym (6), dan (6), nor (6), swe (6), gle (5),
lav (5), hin (4), eus (4), koi (4), ben (4), hun (4), isl (4), lit (4), itl (4),
pbu (3), pes (3), olo (3), myv (3), oss (3), mns (3), liv (3), kmr (3), ekk (3),
sjd (3), lez (3), mrj (3), azj (3), arb (3), mhr (3), mdf (3), vep (3), hye (3)

tur azj (66), uzn (38), tat (35), bak (32), kaz (26), chv (16), sah (14), pes (10),
lez (9), kmr (8), arb (7), pbu (7), dar (5), lbe (5), ddo (4), hin (4), sqi (4),
mhr (4), ava (4), xal (4), mrj (3), bul (3), hun (3), khk (3), bsk (3)

azj tur (66), uzn (45), tat (39), bak (36), kaz (31), chv (19), pes (15), sah (14),
lez (14), pbu (10), arb (9), dar (7), kmr (7), lbe (6), mhr (6), ava (6), hin (5),
mrj (5), ddo (5), xal (4), che (4), bua (4), hun (3), sqi (3), bul (3), hye (3),
bsk (3), itl (3), kat (3), oss (3), koi (3), udm (3), khk (3), ady (3), ron (3),
heb (3), myv (3)

uzn tat (47), kaz (45), azj (45), bak (43), tur (38), chv (21), sah (15), pes (13),
lez (10), pbu (9), arb (7), mhr (7), kmr (7), mrj (6), dar (6), ava (6), hin (5),
lbe (5), ddo (4), xal (4), bua (4), che (4), hun (4), bul (3), khk (3), udm (3),
oss (3), itl (3), myv (3), sjd (3), ady (3), gld (3), sqi (3), heb (3), hye (3)

kaz bak (48), tat (47), uzn (45), azj (31), tur (26), chv (19), sah (15), lez (8),
mhr (6), pes (6), pbu (5), xal (5), dar (4), kmr (4), mrj (4), ddo (4), khk (3),
hin (3), arb (3), lbe (3), udm (3), bua (3), che (3), ava (3), bsk (3)

bak tat (68), kaz (48), uzn (43), azj (36), tur (32), chv (27), sah (17), mhr (10),
lez (8), mrj (7), pes (6), dar (6), xal (5), bua (5), pbu (5), udm (5), arb (5),
ava (5), khk (4), che (4), ddo (4), lbe (4), kmr (4), rus (3), hun (3), myv (3),
itl (3), koi (3), oss (3), hin (3), ady (3), evn (3), gld (3), sjd (3)

tat bak (68), kaz (47), uzn (47), azj (39), tur (35), chv (26), sah (16), mhr (10),
lez (9), pes (7), mrj (7), dar (6), pbu (6), xal (6), ava (5), ddo (5), udm (5),
bua (5), che (5), kmr (5), khk (4), arb (4), lbe (4), rus (3), myv (3), hin (3),
hun (3), gld (3), itl (3), koi (3), sjd (3), ady (3), oss (3), mdf (3), mnc (3)

chv bak (27), tat (26), uzn (21), kaz (19), azj (19), tur (16), sah (13), mhr (13),
mrj (12), lez (6), udm (5), rus (4), koi (4), xal (4), ddo (4), myv (4), bua (4),
dar (4), kca (3), itl (3), oss (3), bul (3), lbe (3), hun (3), ady (3), ava (3),
mdf (3), pbu (3), mns (3), pes (3), khk (3), evn (3), hin (3), che (3)

sah bak (17), tat (16), kaz (15), uzn (15), azj (14), tur (14), chv (13), rus (8),
bua (7), xal (6), khk (6), ukr (5), itl (5), bel (5), bul (5), evn (4), koi (4),
mrj (4), mhr (4), hrv (4), myv (4), sel (4), pol (4), slk (3), ykg (3), slv (3),
udm (3), olo (3), gld (3), ess (3), ces (3), dar (3), lez (3), ale (3), kpv (3),
mns (3), ket (3), kca (3), mnc (3)

khk xal (52), bua (48), mnc (6), sah (6), tat (4), bak (4), gld (3), uzn (3), kaz (3),
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B Intermediate results

language neighbors by amount of overlap (in percent of shared cognates)
azj (3), tur (3), chv (3)

xal khk (52), bua (45), sah (6), tat (6), bak (5), kaz (5), mnc (5), gld (4), azj (4),
uzn (4), chv (4), evn (4), rus (4), itl (4), tur (4), mhr (3), ale (3), myv (3),
hrv (3), mrj (3), sjd (3), sel (3)

bua khk (48), xal (45), sah (7), gld (6), bak (5), tat (5), mnc (4), uzn (4), azj (4),
rus (4), chv (4), evn (3), sjd (3), itl (3), mhr (3), myv (3), ale (3), kaz (3),
koi (3), ket (3), dar (3), bul (3), ady (3)

evn gld (23), mnc (10), rus (6), itl (6), sah (4), ess (4), xal (4), koi (4), bul (4),
ale (4), slv (4), ket (4), hrv (3), slk (3), ukr (3), bua (3), sjd (3), ykg (3),
nio (3), bel (3), myv (3), sel (3), mns (3), enf (3), bak (3), yrk (3), niv (3),
chv (3), mhr (3), ady (3), olo (3)

mnc gld (18), evn (10), khk (6), xal (5), bua (4), kor (3), jpn (3), tat (3), sah (3)
gld evn (23), mnc (18), bua (6), xal (4), rus (4), itl (4), bul (4), khk (3), sjd (3),

hrv (3), koi (3), slk (3), tat (3), ess (3), ale (3), ady (3), mhr (3), sah (3),
slv (3), uzn (3), mrj (3), myv (3), bak (3), bel (3), mns (3), niv (3), che (3)

kor jpn (6), cmn (6), mnc (3)
jpn kor (6), cmn (5), ain (4), mnc (3), eus (3)
ain jpn (4)
niv sel (3), itl (3), rus (3), kpv (3), evn (3), gld (3), sjd (3), sms (3), yrk (3)
itl rus (14), bul (11), hrv (10), ckt (10), slk (9), ukr (9), bel (9), slv (9), pol (8),

ces (7), koi (7), ale (6), sjd (6), myv (6), evn (6), olo (5), mns (5), ess (5),
ket (5), sah (5), mrj (5), lav (5), kpv (4), mhr (4), yrk (4), gld (4), sel (4),
ava (4), ron (4), xal (4), chv (3), hun (3), lez (3), ady (3), dar (3), ekk (3),
mdf (3), abk (3), bak (3), bua (3), kca (3), liv (3), uzn (3), azj (3), cat (3),
oss (3), sms (3), tat (3), vep (3), niv (3), nld (3), por (3), udm (3), ben (3),
enf (3), hin (3), spa (3), swe (3), ykg (3), che (3), deu (3), ita (3), lat (3),
nor (3), pbu (3)

ckt itl (10), ess (3)
ale itl (6), ess (6), rus (5), bul (5), hrv (4), ukr (4), slk (4), evn (4), sjd (4),

bel (4), slv (4), ket (3), kal (3), gld (3), hun (3), myv (3), mrj (3), xal (3),
bua (3), pol (3), abk (3), mhr (3), sah (3), mns (3), ces (3)

ess kal (15), ale (6), itl (5), rus (4), bul (4), evn (4), sjd (4), gld (3), mns (3),
myv (3), ckt (3), sah (3), hrv (3), ket (3), koi (3), sel (3), slv (3), dar (3),
mrj (3), slk (3)

kal ess (15), ale (3), arb (3)
kat abk (5), hye (4), lez (3), ddo (3), azj (3), pes (3), che (3), dar (3)
kan tel (25), mal (20), tam (19), hin (15), ben (9)
mal tam (32), kan (20), tel (19), hin (12), ben (9), eng (4), por (3)
tam mal (32), tel (19), kan (19), hin (6), ben (4), pbu (3), sjd (3)
tel kan (25), tam (19), mal (19), hin (13), ben (10), pbu (3)
bsk hin (9), pbu (7), pes (6), kmr (4), dar (3), lez (3), azj (3), ben (3), kaz (3),

tur (3)
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B.1 Inferred cognacy overlaps

language neighbors by amount of overlap (in percent of shared cognates)
eus spa (8), cat (8), ita (7), por (7), fra (5), lat (5), ron (4), bre (4), eng (3),

sqi (3), gle (3), jpn (3), cym (3), deu (3), nld (3), ell (3)
abk kat (5), ady (5), hye (4), itl (3), oss (3), ale (3)
ady lez (5), abk (5), ava (4), che (4), dar (4), oss (4), hin (3), ddo (3), itl (3),

lbe (3), gld (3), arb (3), chv (3), pbu (3), heb (3), ket (3), uzn (3), bak (3),
tat (3), azj (3), bua (3), evn (3)

ava ddo (20), dar (12), lbe (12), lez (10), che (6), uzn (6), azj (6), pes (5), pbu (5),
tat (5), arb (5), bak (5), oss (4), ady (4), tur (4), itl (4), hin (4), rus (3),
chv (3), kmr (3), hrv (3), koi (3), myv (3), bul (3), kaz (3), slk (3)

ddo ava (20), lbe (11), dar (10), lez (9), azj (5), tat (5), arb (5), pbu (5), tur (4),
che (4), uzn (4), bak (4), pes (4), chv (4), hin (4), kaz (4), ady (3), kat (3),
hrv (3), mhr (3), heb (3)

lbe dar (14), ava (12), lez (12), ddo (11), azj (6), pes (6), pbu (5), uzn (5), arb (5),
tur (5), tat (4), che (4), bak (4), kmr (3), ady (3), chv (3), kaz (3), heb (3)

lez azj (14), dar (12), lbe (12), uzn (10), pes (10), ava (10), pbu (9), tur (9), ddo (9),
tat (9), bak (8), kaz (8), chv (6), hin (6), kmr (6), arb (5), ady (5), che (5),
oss (4), mhr (4), itl (3), rus (3), kat (3), bul (3), bsk (3), mrj (3), koi (3),
heb (3), udm (3), ron (3), sah (3), ell (3), hye (3), sjd (3)

dar lbe (14), ava (12), lez (12), ddo (10), azj (7), tat (6), uzn (6), pes (6), bak (6),
pbu (6), tur (5), arb (5), che (5), kaz (4), ady (4), hin (4), oss (4), chv (4),
itl (3), bsk (3), rus (3), koi (3), kmr (3), sah (3), ket (3), ben (3), hrv (3),
mrj (3), heb (3), sqi (3), hye (3), bua (3), bul (3), slk (3), kat (3), ess (3)

che ava (6), dar (5), lez (5), tat (5), ddo (4), bak (4), ady (4), azj (4), lbe (4),
oss (4), pbu (4), hin (4), uzn (4), kmr (3), mrj (3), pes (3), mhr (3), chv (3),
heb (3), kat (3), kaz (3), gld (3), itl (3), ket (3), arb (3), ell (3), myv (3)

ket rus (5), itl (5), bul (4), sjd (4), slv (4), evn (4), ukr (4), ale (3), hrv (3),
koi (3), mns (3), myv (3), sel (3), ady (3), bel (3), slk (3), ess (3), dar (3),
bua (3), hun (3), mrj (3), che (3), mhr (3), sah (3)

arb heb (15), pes (13), pbu (9), azj (9), tur (7), uzn (7), hin (6), lez (5), dar (5),
ddo (5), lbe (5), ava (5), bak (5), tat (4), kmr (4), ady (3), kaz (3), ron (3),
kal (3), che (3)

heb arb (15), lez (3), ady (3), oss (3), pbu (3), pes (3), azj (3), dar (3), lbe (3),
che (3), ddo (3), uzn (3)

cmn kor (6), jpn (5)

Figure B.1: Cognacy overlaps between languages in NorthEuraLex 0.9
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B Intermediate results

B.2 The Glottolog tree with branch lengths

The following visualization of the Glottolog 3.0 tree for the NorthEuraLex lan-
guages with inferred branch lengths was produced using Dendroscope 3 (Huson
& Scornavacca 2012). The length of branches from the virtual ROOT node to the
proto-languages of each family is irrelevant, as these branches were not involved
in any computations (ML reconstruction of ancestral cognates was performed
separately for each family).

Figure B.2: Reduced Glottolog tree with estimated branch lengths
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Appendix C: Proof of submodularity

This appendix contains the proof showing that the measure ℎ(Z) for all subsets
Z = {𝑍1, … , 𝑍𝑚} ⊆ ℒ of our set of languagesℒ adheres to the elemental inequal-
ities defining a submodular information measure.

To start with the third condition,

ℎ(∅) =
𝑛
∑
𝑖=1

|∅| = 0.

Monotonicity is also trivially true:

ℎ(Z\{𝐿𝑗}) =
𝑛
∑
𝑖=1

(
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
−
||||
𝐿𝑗,𝑖(𝜔)\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
) ≤

𝑛
∑
𝑖=1

||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
= ℎ(Z)

Finally, here is the not less elementary proof of the sub-modularity condition:

ℎ(Z) + ℎ(Z ∪ 𝐿ℎ ∪ 𝐿𝑗) =
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
+
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔) ∪ 𝐿ℎ,𝑖(𝜔) ∪ 𝐿𝑗,𝑖(𝜔)
||||

= 2⋅
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
+
||||
𝐿ℎ,𝑖(𝜔)\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
+
||||
𝐿𝑗,𝑖(𝜔)\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
−
||||
(𝐿ℎ,𝑖(𝜔) ∪ 𝐿𝑗,𝑖(𝜔))\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||

≤ 2 ⋅
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
+
||||
𝐿ℎ,𝑖(𝜔)\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||
+
||||
𝐿𝑗,𝑖(𝜔)\

𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔)
||||

=
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔) ∪ 𝐿ℎ,𝑖(𝜔)
||||
+
||||
𝑚
⋃
𝑘=1

𝐿𝑘,𝑖(𝜔) ∪ 𝐿ℎ,𝑗(𝜔)
||||
= ℎ(Z ∪ 𝐿ℎ) + ℎ(Z ∪ 𝐿𝑗) (C.1)





Appendix D: Description of
supplementary materials

This appendix describes the contents of the digital supplementary materials dis-
tributed together with this thesis. These include the two testsets for cognate de-
tection, the gold standard file for lexical flow on the NorthEuraLex data, the ver-
sion of NorthEuraLex 0.9 with the inferred cognacy judgments used throughout
Chapter 6 and 7, and the Glottolog tree with branch lengths inferred for Chapter
6 (see Appendix B.2). My reference implementations of the algorithms are avail-
able in a public repository on Github, and the files for all the simulated scenarios
are available for download from my website.

File Description
cognacy-eval-pairs.tsv The cognate detection testset derived from IELex.

One pair of words for the same concept per line.
First column is the NorthEuraLex concept ID,
followed by two blocks of four columns,
each defining a term by the ISO 639-3 code,
the orthographic form, the simplified
IPA representation, and a form ID. The last
column encodes cognacy according to IELex:
T for cognate pairs, F for non-cognate pairs.

wold-nelex-intersect.tsv Lists all instances of borrowings from WOLD
where both loanword and its source are in NELex.
Column 3 contains the loan in notation iso:orth,
Column 4 the source word in the same format.
Column 2 is wold for borrowing events which
appear exactly identically in both databases,
and woldx if some adaptation was necessary.
Column 1 is always 1 (high confidence only).

nelex-gold-standard-contact.txt PLFI gold standard, one contact per line
in machine-readable format of form A rel B.
Language names from ISO 639-3 or Glottolog.
The symbol –> is for cross-family contacts,



D Description of supplementary materials

File Description
o-> for directional contacts within families.

inferred-cognates.tsv Inferred cognate sets over NorthEuraLex 0.9 for a
UPGMA threshold of 0.45, in a 5-column format.
Concept ID in Column 1, ISO 639-3 in Column 2,
orthography and IPA string in Columns 3 and 4,
Column 5 a numeric set ID (separate per concept).

nelex-tree-with-lengths.nwk Glottolog tree reduced to NorthEuraLex languages,
with inferred branch lengths, in Newick format.
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Information-theoretic causal
inference of lexical flow

This volume seeks to infer large phylogenetic networks from phonetically encoded lex-
ical data and contribute in this way to the historical study of language varieties. The
technical step that enables progress in this case is the use of causal inference algorithms.
Sample sets of words from language varieties are preprocessed into automatically in-
ferred cognate sets, and then modeled as information-theoretic variables based on an
intuitive measure of cognate overlap. Causal inference is then applied to these variables
in order to determine the existence and direction of influence among the varieties.

The directed arcs in the resulting graph structures can be interpreted as reflecting
the existence and directionality of lexical flow, a unified model which subsumes inheri-
tance and borrowing as the two main ways of transmission that shape the basic lexicon
of languages. A flow-based separation criterion and domain-specific directionality de-
tection criteria are developed to make existing causal inference algorithms more robust
against imperfect cognacy data, giving rise to two new algorithms. The Phylogenetic
Lexical Flow Inference (PLFI) algorithm requires lexical features of proto-languages to
be reconstructed in advance, but yields fully general phylogenetic networks, whereas the
more complex Contact Lexical Flow Inference (CLFI) algorithm treats proto-languages
as hidden common causes, and only returns hypotheses of historical contact situations
between attested languages.

The algorithms are evaluated both against a large lexical database of Northern Eura-
sia spanning many language families, and against simulated data generated by a new
model of language contact that builds on the opening and closing of directional contact
channels as primary evolutionary events.The algorithms are found to infer the existence
of contacts very reliably, whereas the inference of directionality remains difficult. This
currently limits the new algorithms to a role as exploratory tools for quickly detecting
salient patterns in large lexical datasets, but it should soon be possible for the framework
to be enhanced e.g. by confidence values for each directionality decision.
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