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Semantic idiomaticity is the extent to which the meaning of a multiword expres-
sion (MWE) cannot be predicted from the meanings of its component words. Much
work in natural language processing on semantic idiomaticity has focused on com-
positionality prediction, wherein a binary or continuous-valued compositionality
score is predicted for an MWE as a whole, or its individual component words. One
source of information for making compositionality predictions is the translation
of an MWE into other languages. This chapter extends two previously-presented
studies – Salehi & Cook (2013) and Salehi et al. (2014) – that propose methods for
predicting compositionality that exploit translation information provided by mul-
tilingual lexical resources, and that are applicable to many kinds of MWEs in a
wide range of languages. These methods make use of distributional similarity of
an MWE and its component words under translation into many languages, as well
as string similarity measures applied to definitions of translations of an MWE and
its component words. We evaluate these methods over English noun compounds,
English verb-particle constructions, and German noun compounds. We show that
the estimation of compositionality is improved when using translations into multi-
ple languages, as compared to simply using distributional similarity in the source
language. We further find that string similarity complements distributional simi-
larity.
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1 Compositionality of MWEs

Multiword expressions (hereafter MWEs) are combinations of words which are
lexically, syntactically, semantically or statistically idiosyncratic (Sag et al. 2002;
Baldwin & Kim 2010). Much research has been carried out on the extraction and
identification of MWEs1 in English (Schone & Jurafsky 2001; Pecina 2008; Fazly
et al. 2009) and other languages (Dias 2003; Evert & Krenn 2005; Salehi et al.
2012). However, considerably less work has addressed the task of predicting the
meaning of MWEs, especially in non-English languages. As a step in this direc-
tion, the focus of this study is on predicting the compositionality of MWEs.

An MWE is fully compositional if its meaning is predictable from its compo-
nent words, and it is non-compositional (or idiomatic) if not. For example, stand
up “rise to one’s feet” is compositional, because its meaning is clear from the
meaning of the components stand and up. However, the meaning of strike up “to
start playing” is largely unpredictable from the component words strike and up.

In this study, following McCarthy et al. (2003) and Reddy et al. (2011), we con-
sider compositionality to be graded, and aim to predict the degree of compositio-
nality. For example, in the dataset of Reddy et al. (2011), climate change is judged
to be 99% compositional, while silver screen is 48% compositional and ivory tower
is 9% compositional. Formally, we model compositionality prediction as a regres-
sion task.

An explicit handling ofMWEs has been shown to be useful in NLP applications
(Ramisch 2012). As an example, Carpuat & Diab (2010) proposed two strategies
for integrating MWEs into statistical machine translation. They show that even
a large scale bilingual corpus cannot capture all the necessary information to
translate MWEs, and that in adding the facility to model the compositionality
of MWEs into their system, they could improve translation quality. Acosta et al.
(2011) showed that treating non-compositional MWEs as a single unit in infor-
mation retrieval improves retrieval effectiveness. For example, while searching
for documents related to ivory tower , we are almost certainly not interested in
documents relating to elephant tusks.

Our approach is to use a large-scale multi-way translation lexicon to source
translations of a given MWE and each of its component words, and then model
the semantic similarity between each component word and the MWE.2 We con-
sider similarity measures based on distributional similarity from monolingual

1In this chapter, we follow Baldwin & Kim (2010) in considering MWE “identification” to be a
token-level disambiguation task, and MWE “extraction” to be a type-level lexicon induction
task.

2Note that we will always assume that there are two component words, but the method is easily
generalisable to MWEs with more than two components.
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mwe component1 component2

Translate
(using PanLex)

Translate
(using PanLex)
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Translations

similarity similarity

sim𝑖(component1,mwe) sim𝑖(component2,mwe)

Figure 1: Outline of our approach to computing the similarity of trans-
lations of anMWEwith each of its component words, for a given target
language. sim𝑖 is the similarity between the first or second component
of the MWE, and the MWE itself, based on either string or distribu-
tional similarity, as measured using language 𝑖.

corpora for the source language and each of the target languages, as well as string
similarity measures applied to definitions of translations of an MWE and its com-
ponent words as shown in Figure 1. We then consider a variety of approaches to
combining similarity scores from the various languages to produce a final compo-
sitionality score for the source language expression, as illustrated in Figure 2. We
hypothesise that by using multiple translations we will be able to better predict
compositionality, and that string similarity measures will complement distribu-
tional similarity. Our results confirm our hypotheses, and we further achieve
state-of-the-art results over two compositionality prediction datasets.

This chapter combines two previous works – Salehi & Cook (2013) and Salehi
et al. (2014) – and extends them in the following ways:

• two new string similarity measures in §4.1.1;
• updated results in §4.2 for the method of Salehi & Cook (2013) such that
they are now comparable with the results of the method of Salehi et al.
(2014) in §6 – previously these results were not comparable because they
used different cross-validation folds during evaluation;

• new results for a dataset of German noun compounds based on the string
similarity methods in §4.2;
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component1 scores for each language component2 scores for each language

mean = 𝑓1 mean = 𝑓1

𝑠1 𝑠2

𝑓2(𝑠1, 𝑠2) = 𝛼𝑠1 + (1 − 𝛼)𝑠2

compositionality score (𝑠3)
Figure 2: Outline of the method for combining similarity scores from
multiple languages, across the components of the MWE.

• additional error analysis in §4.2.1 for English verb-particle constructions;
• two new translation-based similarity approaches, and results for thesemeth-
ods, in §4.2.2;

• experiments considering an alternative translation dictionary in §5;
• analysis of the impact of window size on the distributional similarity ap-
proach in §6.1.1.

2 Related work

Most recent work on predicting the compositionality of MWEs can be divided
into two categories: language/construction-specific and general-purpose. This
can be at either the token-level (over token occurrences of an MWE in a corpus)
or type-level (over the MWE string, independent of usage). The bulk of work on
compositionality has been language/construction-specific and operated at the
token-level, using dedicated methods to identify instances of a given MWE, and
specific properties of the MWE in that language to predict compositionality (Lin
1999; Kim & Baldwin 2007; Fazly et al. 2009).

General-purpose token-level approaches such as distributional similarity have
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been commonly applied to infer the semantics of a word/MWE (Schone & Ju-
rafsky 2001; Baldwin et al. 2003; Reddy et al. 2011). These techniques are based
on the assumption that the meaning of a word is predictable from its context
of use, via the neighbouring words of token-level occurrences of the MWE. In
order to predict the compositionality of a given MWE using distributional simi-
larity, the different contexts of the MWE are compared with the contexts of its
components, and the MWE is considered to be compositional if the MWE and
component words occur in similar contexts.

Identifying token instances of MWEs is not always easy, especially when the
component words do not occur sequentially. For example, consider put on in put
your jacket on, and put your jacket on the chair . In the first example put on is an
MWE, while in the second example, put on is a simple verb with prepositional
phrase and not an instance of an MWE. Moreover, if we adopt a conservative
identification method, the number of token occurrences will be limited and the
distributional scores may not be reliable. Additionally, for morphologically-rich
languages, it can be difficult to predict the different word forms a given MWE
type will occur across, posing a challenge for our requirement of no language-
specific preprocessing.

Pichotta & DeNero (2013) proposed a token-based method for identifying En-
glish phrasal verbs based on parallel corpora for 50 languages. They show that
they can identify phrasal verbs better when they combine information from mul-
tiple languages, in addition to the information they get from a monolingual cor-
pus. This finding lends weight to our hypothesis that using translation data and
distributional similarity from each of a range of target languages, can improve
compositionality prediction. Having said that, the general applicability of their
method is questionable – there are many parallel corpora involving English, but
for other languages, this tends not to be the case.

In the literature, compositionality has been viewed as either compositionality
of the whole MWE as one unit (McCarthy et al. 2003; Venkatapathy & Joshi 2005;
Katz 2006; Biemann & Giesbrecht 2011; Farahmand et al. 2015), or compositiona-
lity relative to each component (Reddy et al. 2011; Hermann et al. 2012; Schulte
imWalde et al. 2013). There have also been studies which focus only on one com-
ponent of the MWE. For example, Korkontzelos & Manandhar (2009) induce the
most probable sense of an MWE first, and then measure the semantic similarity
between the MWE and its semantic head. This approach of considering only the
head component has been shown to be quite accurate for English verb-particle
constructions (Bannard et al. 2003). However, this might not always be the case.
For example, as shown in Reddy et al. (2011), the compositionality of the first
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noun (the modifier) has more impact than the second noun (the head) for En-
glish noun compounds.

Elsewhere, a lot of work has been done on specific types of MWE in specific
languages. In English, studies have been done specifically on VPCs (McCarthy
et al. 2003; Bannard et al. 2003), verb+noun MWEs (Venkatapathy & Joshi 2005;
McCarthy et al. 2007; Fazly et al. 2009), noun compounds (Reddy et al. 2011),
and adjective+noun compounds (Vecchi et al. 2011). There have also been studies
focusing on a specific language other than English, such as Arabic (Saif et al. 2013)
and German (Schulte im Walde et al. 2013). This chapter investigates language
independent approaches applicable to any type of MWE in any language.

3 Resources

In this section, we describe the datasets used to evaluate our method and the
multilingual dictionary it requires.These are the same resources as used by Salehi
& Cook (2013) and Salehi et al. (2014).

3.1 Datasets

We evaluate our proposedmethod over three datasets (two English, one German),
as described below.

3.1.1 English noun compounds (ENC)

Our first dataset is made up of 90 binary English noun compounds, from thework
of Reddy et al. (2011). Each noun compound was annotated by multiple annota-
tors using the integer scale 0 (fully non-compositional) to 5 (fully compositional).
A final compositionality score was then calculated as the mean of the scores from
the annotators. If we simplistically consider 2.5 as the threshold for compositio-
nality, the dataset is relatively well balanced, containing 48% compositional and
52% non-compositional noun compounds.

Spearman correlation was used to get an estimate of inter-annotator agree-
ment. The average correlation for compound compositionality was 𝜌 = 0.522.
This score was slightly higher for the compositionality of components (𝜌 = 0.570
for the first component and 𝜌 = 0.616 for the second component).
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3.1.2 English verb-particle constructions (EVPC)

The second dataset contains 160 English verb-particle constructions (VPCs), from
the work of Bannard (2006). In this dataset, a verb-particle construction consists
of a verb (the head) and a prepositional particle (e.g. hand in, look up or battle
on). For each component word (the verb and particle, respectively), multiple an-
notators were asked whether the VPC entails the component word. In order to
translate the dataset into a regression task, we calculate the overall compositio-
nality as the number of annotations of entailment for the verb, divided by the
total number of verb annotations for that VPC. That is, following Bannard et al.
(2003), we only consider the compositionality of the verb component in our ex-
periments. The Kappa score between the multiple annotators is 0.372 for verb
and 0.352 for the particle component.

3.1.3 German noun compounds (GNC)

Our final dataset is made up of 246 German noun compounds (von der Heide &
Borgwaldt 2009; Schulte im Walde et al. 2013). Multiple annotators were asked
to rate the compositionality of each German noun compound on an integer scale
of 1 (non-compositional) to 7 (compositional). The overall compositionality score
is then calculated as the mean across the annotators. Note that the component
words are provided as part of the dataset, and that there is no need to perform
decompounding. This dataset is significant as it is non-English and because of
the fact that German has relatively rich morphology, which we expect to impact
on the identification of both the MWE and the component words.

3.2 Multilingual dictionary

To translate the MWEs and their components, we use PanLex (Baldwin et al.
2010). This online dictionary is massively multilingual, covering more than 1353
languages. The translations are sourced from handmade electronic dictionaries.
It contains lemmatised words and MWEs in a large variety of languages, with
lemma-based (and less frequently sense-based) links between them.

For each MWE dataset (see §3.1), we translate each MWE, and its component
words, from the source language into many target languages. These translations
will be used in §4 and §6. In instances where there is no direct translation in a
given language for a term, we use a pivot language to find translation(s) in the
target language. For example, the English noun compound silver screen has direct
translations in only 13 languages in PanLex, including Vietnamese (màn bac) but
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not French. There is, however, a translation of màn bac into French (cinéma),
allowing us to infer an indirect translation between silver screen and cinéma. In
this way, if there are no direct translations into a particular target language, we
search for a single-pivot translation via each of our other target languages, and
combine them all together as our set of translations for the target language of
interest.

4 String similarity

In this section we present our string similarity-based method for predicting com-
positionality, followed by experimental results using this method. This section
extends Salehi & Cook (2013) as described in §1.

4.1 Compositionality prediction based on string similarity

We hypothesize that compositional MWEs are more likely to be word-for-word
translations in a given language than non-compositional MWEs. Hence, if we
can locate the translations of the components in the translation of the MWE, we
can deduce that it is compositional. As an example of our method, consider the
English-to-Persian translation of kick the bucket as a non-compositional MWE
and make a decision as a semi-compositional MWE (Table 1).3 By locating the
translation of decision (tasmim) in the translation of make a decision (tasmim
gereftan), we can deduce that it is semi-compositional. However, we cannot locate
any of the component translations in the translation of kick the bucket. Therefore,
we conclude that it is non-compositional. Note that in this simple example, the
match is word-level, but that due to the effects of morphophonology, the more
likely situation is that the components don’t match exactly (as we observe in the
case of khadamaat and khedmat for the public service example), which motivates
our use of string similarity measures which can capture partial matches.

4.1.1 String similarity measures

We consider the following string similarity measures to compare the translations.
In each case, we normalize the output value to the range [0, 1], where 1 indicates
identical strings and 0 indicates completely different strings. We will indicate the
translation of the MWE in a particular language 𝑡 as mwe𝑡 , and the translation
of a given component in language 𝑡 as component𝑡 .

3Note that the Persian words are transliterated into English for ease of understanding.
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Table 1: English MWEs and their components with their translation in
Persian. Direct matches between the translation of an MWE and its
components are shown in bold; partial matches are shown in italics.

English Persian translation

kick the bucket mord
kick zad
the –
bucket satl

make a decision tasmim gereft
make sakht
a yek
decision tasmim

public service khadamaat omumi
public omumi
service khedmat

Longest common substring (LCS): TheLCSmeasure finds the longest common
substring between two strings. For example, the LCS between ABABC and BABCAB
is BABC. We calculate a normalized similarity value based on the length of the
LCS as follows:

LCS(mwe𝑡 , component𝑡)
min(len(mwe𝑡), len(component𝑡)) (13.1)

Levenshtein (LEV1): The Levenshtein distance calculates the number of basic
edit operations required to transform one word into the other. Edits consist of
single-letter insertions, deletions or substitutions. We normalize LEV1 as follows:

1 − LEV1(mwe𝑡 , component𝑡)
max(len(mwe𝑡), len(component𝑡)) (13.2)

Levenshtein with substitution penalty (LEV2): One well-documented feature
of Levenshtein distance (Baldwin 2009) is that substitutions are in fact the com-
bination of an addition and a deletion, and as such can be considered to be two
edits. Based on this observation, we experiment with a variant of LEV1 with this
penalty applied for substitutions. Similarly to LEV1, we normalize as follows:
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1 − LEV2(mwe𝑡 , component𝑡)
len(mwe𝑡) + len(component𝑡) (13.3)

Smith Waterman (SW): This method is based on the Needleman-Wunsch al-
gorithm,4 and was developed to locally-align two protein sequences (Smith &
Waterman 1981). It finds the optimal similar regions by maximizing the number
of matches and minimizing the number of gaps necessary to align the two se-
quences. For example, the optimal local sequence for the two sequences below is
AT−−ATCC, in which “−” indicates a gap:

Seq1: ATGCATCCCATGAC
Seq2: TCTATATCCGT

As the example shows, it looks for the longest common string but has a built-in
mechanism for including gaps in the alignment (with penalty).This characteristic
of SW might be helpful in our task, because there may be morphophonological
variations between the MWE and component translations (as seen above in the
public service example). We normalize SW similarly to LCS:

len(alignedSequence)
min(len(mwe𝑡), len(component𝑡)) (13.4)

The aligned sequence is the combination of the common characters in the optimal
local sequence we found using SW. In the above example, the aligned sequence
is ATATCC.

Jaccard and Dice similarity: For further analysis, we experiment with Jaccard
and Dice similarity, which are well-known for measuring the similarity between
two sentences or bodies of text (Gomaa & Fahmy 2013). Both methods view the
texts as sets of words, with similarity based on the size of the intersection be-
tween the sets, but differ in the way they are normalized. In our case, we expect
relatively low overlap at the word level due to morphophonology, and therefore

4The Needleman-Wunsch (NW) algorithm was designed to align two sequences of amino-acids
(Needleman & Wunsch 1970). The algorithm looks for the sequence alignment which maxi-
mizes the similarity. As with the LEV score, NW minimizes edit distance, but also takes into
account character-to-character similarity based on the relative distance between characters on
the keyboard. We exclude this score because it is highly similar to the LEV scores and we did
not obtain encouraging results using NW in our preliminary experiments.
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calculate Jaccard (J) and Dice (D) at the character- instead of word-level as fol-
lows:

𝐽 = |mwe𝑡 ∩ component𝑡 |
|mwe𝑡 | + |component𝑡 | − |mwe𝑡 ∩ component𝑡 | (13.5)

𝐷 = 2 ∗ |mwe𝑡 ∩ component𝑡 |
|component𝑡 | + |mwe𝑡 | (13.6)

4.1.2 Calculating compositionality

Given the string similarity scores calculated between the translations for a given
component word and the MWE, we need some way of combining scores across
component words. First, we measure the compositionality of each component
within the MWE (𝑠1 and 𝑠2):

𝑠1 = 𝑓1(sim1(𝑤1,mwe), ..., sim𝑖(𝑤1,mwe)) (13.7)

𝑠2 = 𝑓1(sim1(𝑤2,mwe), ..., sim𝑖(𝑤2,mwe)) (13.8)

where sim is a similarity measure, sim𝑖 indicates that the calculation is based on
translations in language 𝑖, and 𝑓1 is a score combination function.

Then, we compute the overall compositionality of the MWE (𝑠3) from 𝑠1 and
𝑠2 using 𝑓2:

𝑠3 = 𝑓2(𝑠1, 𝑠2) (13.9)

Since we often have multiple translations for a given component word/MWE in
PanLex, we exhaustively compute the similarity between each MWE translation
and component translation, and use the highest similarity as the result of sim𝑖 .
If an instance does not have a direct/indirect translation in PanLex, we assign
a default value, which is the mean of the highest and lowest annotation score
for the dataset under consideration. Note that word order is not an issue in our
method, as we calculate the similarity independently for each MWE component.

We consider simple functions for 𝑓1 such as mean, median, product, minimum
and maximum. 𝑓2 was selected to be the same as 𝑓1 in all situations, except when
we use mean for 𝑓1. Here, following Reddy et al. (2011), we experimented with
weighted mean:
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𝑓2(𝑠1, 𝑠2) = 𝛼𝑠1 + (1 − 𝛼)𝑠2 (13.10)

Based on 3-fold cross-validation, we chose 𝛼 = 0.7 for ENC.5 We found 𝛼 = 0.7
is also optimal for GNC.

Since we do not have judgements for the compositionality of the full VPC in
EVPC (we instead have separate judgements for the verb and particle), we cannot
use 𝑓2 for this dataset. Bannard et al. (2003) observed that nearly all of the verb-
compositional instances were also annotated as particle-compositional by the
annotators. In line with this observation, we use 𝑠1 (based on the verb) as the
compositionality score for the full VPC.

4.1.3 Language selection

Our method is based on the translation of an MWE into many languages. First,
we chose 54 languages for which relatively large corpora were available.6 The
coverage, or the number of instances which have direct/indirect translations in
PanLex, varies from one language to another. In preliminary experiments, we no-
ticed that there is a high correlation (between roughly 𝑟 = 0.6 and 0.8 across the
three datasets) between the usefulness of a language and its translation coverage
on MWEs. Therefore, we excluded languages with MWE translation coverage of
less than 50%. Based on nested 10-fold cross-validation in our experiments, we
select the 10 most useful languages for each cross-validation training partition,
based on the Pearson correlation between the given scores in that language and
human judgements.7 The 10 best languages are selected based only on the train-
ing set for each fold. (The languages selected for each fold will later be used to
predict the compositionality of the items in the testing portion for that fold.)

4.2 Results

As mentioned above, we perform nested 10-fold cross-validation to select the 10
best languages on the training data for each fold. The selected languages for a
given fold are then used to compute 𝑠1 and 𝑠2 (and 𝑠3 for NCs) for each instance

5We considered values of 𝛼 from 0 to 1, incremented by 0.1.
6In §6 these corpora will be used to compute distributional similarity. Note that the string sim-
ilarity methods of interest here do not rely on the availability of large corpora.

7Note that for VPCs, we calculate the compositionality of only the verb part, because we don’t
have the human judgements for the whole VPC.
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Table 2: Correlation (𝑟 ) on each dataset, for each string similarity mea-
sure. The best correlation for each dataset is shown in boldface.

Method ENC EVPC GNC

SW 0.644 0.349 0.379
LCS 0.644 0.385 0.372
LEV1 0.502 0.328 0.318
LEV2 0.566 0.327 0.389
Jaccard 0.474 0.335 0.299
Dice 0.557 0.331 0.370

Unsupervised (family) 0.556 0.257 0.164
Unsupervised (coverage) 0.642 0.323 0.343

in the test set for that fold. The scores are compared with human judgements
using Pearson’s correlation.

We experimented with five functions for 𝑓1, namely mean, median, product,
maximum and minimum. Among these functions, mean performed consistently
better than the others, and as such we only present results using mean in Table 2.

For ENC, LCS and SW perform best, while for EVPC, LCS performs best with
SW being the next best measure. Both LCS and SW look for a sequence of similar
characters, unlike LEV1 and LEV2, which are not affected by match contiguity.
For GNC, LEV2, SW and LCS perform better than LEV1. However, unlike the
other two datasets, LEV2 is the best performingmethod, and SW is slightly better
than LCS.

For all datasets, Jaccard and Dice performworse than SW and LCS.This shows
that, despite being useful in measuring the similarity between sentences, these
two measures do not perform well in this compositionality prediction task. The
relatively poor performance of these measures could be because, unlike the other
measures, Jaccard and Dice are calculated independently of the order of charac-
ters. Dice performs better than Jaccard for ENC andGNC, while Jaccard performs
slightly better than Dice for EVPC.

The results support our hypothesis that using multiple target languages rather
than one, results in a more accurate prediction of MWE compositionality. Our
best result using the 10 selected languages on ENC is 𝑟 = 0.644, as compared
to the best single-language correlation of 𝑟 = 0.543 for Portuguese. On EVPC,
the best LCS result for the verb component is 𝑟 = 0.385, as compared to the
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best single-language correlation of 𝑟 = 0.342 for Lithuanian. For GNC, the best
correlation of 𝑟 = 0.389 is well above the highest correlation of a single language
of roughly 𝑟 = 0.32.

In §6 we will combine this string similarity approach with an approach based
on distributional similarity, and compare it against a baseline and state-of-the-art
approaches.

4.2.1 Error analysis

We analysed items in ENC which have a high absolute difference (more than
2.5) between the human annotation and our scores (using LCS and mean). The
words are cutting edge, melting pot, gold mine and ivory tower , which are non-
compositional according to ENC. After investigating their translations, we came
to the conclusion that the first three MWEs have word-for-word translations in
most languages. Hence, they disagree with our hypothesis that word-for-word
translation is a strong indicator of compositionality. The word-for-word transla-
tions might be because of the fact that they have both compositional and non-
compositional senses, or because they are calques (loan translations). However,
we have tried to avoid such problems with calques by using translations into
several languages.

For ivory tower (“a state of mind that is discussed as if it were a place”)8 we no-
ticed that we have a direct translation into 13 languages. Other languages have in-
direct translations. By checking the direct translations, we noticed that, in French,
the MWE is translated to tour and tour d’ivoire. A noisy (wrong) translation of
tour “tower” resulted in wrong indirect translations for ivory tower and an in-
flated estimate of compositionality.

We repeat the same error analysis for the EVPC dataset. The items with a high
difference between the human annotation and our scores are: carry out, drop
out, get in, carry away, wear down and turn on. All of these items are annotated
as non-compositional. These VPCs also have a compositional sense beside the
non-compositional meaning. Also, as with the ENC dataset, we have problems
of calques. For example, drop out when translated to German (ausfallen) includes
the word fallen, which is one of the translations of drop.

4.2.2 Unsupervised approach

The proposed translation-based string similarity approach has been supervised
so far, in that the best target languages are selected based on training data. In this

8This definition is from Wordnet 3.1.
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section, we propose two unsupervised approaches in which: (1) only the target
languages of the same language family as the source language are considered;
and (2) only the 10 target languages with the highest translation coverage are
considered.

Languages of the same family: We hypothesize that translations into target
languages in the same language family as the source language might be partic-
ularly useful for compositionality prediction for MWEs in the source language.
To test this hypothesis, we consider an unsupervised approach in which only
languages in the same family as the source language are used when computing
the compositionality scores.

In this unsupervised approach, LCS scores of the languages of the same fam-
ily as the source language (here Germanic, for both the English and German
datasets) are considered. The Germanic languages among our 54 languages are:
English, German, Danish, Dutch, Icelandic, Luxembourgish, Norwegian and Swe-
dish.

Results for this unsupervised approach are shown in Table 2 (“Unsupervised
(family)”). This approach performs substantially worse than the corresponding
supervised approach based on LCS, for each dataset. This drop in performance
could be because almost none of the 10 best languages selected in the supervised
approach are in the same language family as the source language. The shared
languages between the supervised approach and this approach are Dutch and
Norwegian for ENC, English for GNC. There is no shared language between the
two approaches when using EVPC.

Languages with the highest translation coverage: In the proposed supervised
setup, the best target languages are those whose scores have the highest correla-
tion with gold-standard annotations. According to our experiments, we showed
that there is a strong correlation between being a good language for this com-
positionality prediction task and its coverage in PanLex (in the range of roughly
0.6 < 𝑟 < 0.8 across the three datasets). In other words, the target languages to
which most of the source language MWEs have a translation in PanLex, result in
higher correlation for compositionality prediction.

We now consider an unsupervised approach, in which only the 10 target lan-
guages with the highest translation coverage are considered. The results of this
unsupervised approach, again using LCS, are shown in Table 2 (“Unsupervised
(coverage)”). According to the results, despite the lower correlation scores for
the proposed unsupervised method, this method is comparable to the supervised
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Table 3: The 10 languages with the highest translation coverage for
ENC, EVPC and GNC. Languages also selected by the supervised ap-
proach are shown in boldface.

ENC EVPC GNC

German German English
Finnish Finnish Japanese
French French French
Italian Italian Italian
Russian Japanese Russian
Spanish Hungarian Hungarian
Portuguese Dutch Dutch
Japanese Polish Turkish
Chinese Chinese Chinese
Czech Czech Czech

approach.Therefore, in the case of not having a training set for a group of MWEs
(no matter in what language or what type of MWE), we suggest using the target
languages to which the majority of those MWEs have a translation.

The 10 languages with highest correlation for ENC, EVPC and GNC are shown
in Table 3. There is some overlap between the list of languages with the highest
coverage and the 10 best languages selected in our supervised approach, as shown
in boldface for each dataset.

5 An alternative multilingual dictionary

In this section we consider the same string similarity-based approach to predict-
ing compositionality as in §4.1, but using an alternative multilingual dictionary
to PanLex, specifically dict.cc.9

dict.cc is a translation dictionary that provides translations for both English
and German into 26 languages spoken in Europe. It is a crowd-sourced dictio-
nary, with translations being contributed, and refined, by users. Due to the rel-
atively small number of languages it covers, relying on dict.cc goes against our
goals of developing compositionality prediction methods that are applicable to
any language; we could not use dict.cc to predict the compositionality of, for
example, a French MWE, because translations are not available for French into
many languages (only English and German). Nevertheless, by considering the

9https://www.dict.cc/
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Table 4: Correlation (𝑟 ) on each dataset, for each string similarity mea-
sure, using dict.cc and PanLex as the translation dictionary. The best
correlation for each dataset is shown in boldface.

Dictionary Method ENC EVPC GNC

dict.cc

SW .269 .217 .514
LCS .251 .262 .523
LEV1 .181 .161 .482
LEV2 .163 .189 .474
Jaccard .158 .127 .442
Dice .230 .192 .420

PanLex

SW .559 .294 .270
LCS .551 .276 .290
LEV1 .388 .274 .276
LEV2 .512 .281 .262
Jaccard .459 .241 .267
Dice .541 .235 .197

use of an alternative translation dictionary (which is applicable to the English
and German datasets we use for evaluation) we can learn whether our approach
to predicting compositionality implicitly relies on information particular to Pan-
Lex, or whether an alternative dictionary can be substituted in its place.

We chose target languages available in dict.cc that overlap with the set of 54
target languages used in experiments with PanLex in §4.1. This resulted in 22 tar-
get languages. We introduced this restriction, as opposed to using all languages
available in dict.cc, to allow us to compare PanLex and dict.cc when using the
exact same set of target languages.

Results for the string similarity-based approach to predicting compositionality,
using dict.cc and PanLex, each with the same 22 target languages, are shown in
Table 4. The 10 best languages are selected using the same method as in §4.1.3.

For each translation dictionary and dataset, the best method is always one
of either SW or LCS, and in many cases these are the top two methods (with
the exceptions being EVPC and GNC using PanLex). These methods were also
found to perform well in §4.2 when using PanLex and 54 target languages. This
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Figure 3: Boxplots showing the percentage of expressions in each
dataset covered by dict.cc and PanLex, over the 22 target languages.

demonstrates that the methods are robust to the choice of specific translation
dictionary, and when the number of target languages is substantially reduced.

There are, however, substantial differences between the results using different
translation dictionaries. For any combination of dataset and method, the results
using PanLex are always better than those using dict.cc for ENC and EVPC, while
for GNC, the results using dict.cc are always better. To understand why this is
the case, for each dataset and dictionary, and for each of the 22 target languages,
we computed the proportion of expressions for which translations are available.
Boxplots illustrating these findings are shown in Figure 3. On average across the
target languages, many more expressions are covered by PanLex than dict.cc for
ENC and EVPC, while for GNC the coverage is higher for dict.cc. For example,
according to Figure 3, for EVPC the coverage for almost all of the 22 target lan-
guages is close to 100% in PanLex.

Because it in keeping with our goal of building methods for compositionality
prediction that are applicable to any language, and because it gives the best re-
sults in two out of three cases for the datasets used for evaluation, we will only
consider PanLex as the translation dictionary for the remainder of this chapter.
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6 Distributional similarity

In this section we describe a method for predicting compositionality based on
the same framework as in §4, but using distributional similarity instead of string
similarity. This section extends Salehi et al. (2014) as described in §1.

6.1 Compositionality prediction based on distributional similarity

To predict the compositionality of a given MWE, we first measure the semantic
similarity between the MWE and each of its component words using distribu-
tional similarity based on a monolingual corpus in the source language. We then
repeat the process for translations of the MWE and its component words into
each of a range of target languages, calculating distributional similarity using
a monolingual corpus in the target language. We additionally use supervised
learning to identify which target languages (or what weights for each language)
optimise the prediction of compositionality. We hypothesise that by using mul-
tiple translations – rather than only information from the source language – we
will be able to better predict compositionality. We further optionally combine
our proposed approach with the LCS-based string similarity method from §4.

Below, we detail our method for calculating distributional similarity in a given
language, the different methods for combining similarity scores into a single es-
timate of compositionality, and finally the method for selecting the target lan-
guages to use in calculating compositionality.

6.1.1 Calculating distributional similarity

We collected monolingual corpora for each of the 52 languages (51 target lan-
guages + 1 source language) from XML dumps of Wikipedia. These languages are
based on the 54 target languages used in §4, excluding Spanish because we hap-
pened not to have a dump of Spanish Wikipedia, and also Chinese and Japanese
because of the need for a language-specific word tokeniser.The raw corpora were
preprocessed using the WP2TXT toolbox10 to eliminate XML tags, HTML tags
and hyperlinks, and then tokenisation based on whitespace and punctuation was
performed. The corpora vary in size from roughly 750M tokens for English, to
roughly 640K tokens for Marathi.

In order to be consistent across all languages and to be as language-indepen-
dent as possible, we calculate distributional similarity in the following manner
for a given language.

10http://wp2txt.rubyforge.org/
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Table 5: Results of distributional similarities using 10 best languages
on ENC dataset (𝑁 is window size)

Context window Correlation (𝑟 )
Sentence 0.425
Window (𝑁=3) 0.175
Window (𝑁=3, with positional index) 0.031

Tokenisation is based on whitespace delimiters and punctuation; no lemmati-
sation or case-folding is carried out. Token instances of a given MWE or compo-
nent word are identified by full-token 𝑛-gram matching over the token stream.
We assume that all full stops and equivalent characters for other orthographies
are sentence boundaries, and chunk the corpora into (pseudo-)sentences on the
basis of them. For each language, we identify the 51st–1050th most frequent
words, and consider them to be content-bearing words, in the manner of Schütze
(1997). This is based on the assumption that the top-50 most frequent words are
stop words, and not a good choice of word for calculating distributional similar-
ity over. That is not to say that we can’t calculate the distributional similarity for
stop words, however (as we will for the EVPC dataset) they are simply not used
as the dimensions in our calculation of distributional similarity.

We form a vector of content-bearing words across all token occurrences of the
target word, on the basis of these 1000 content-bearing words. Our preliminary
results on selecting the best context window size are shown in Table 5. Accord-
ing to this table, for predicting the compositionality using the best 10 languages,
the sentence context window results in a higher correlation. We use sentence
boundaries as the context window in the rest of our experiments. According to
Weeds (2003) and Padó & Lapata (2007), using dependency relations with the
neighbouring words of the target word can better predict the meaning of the
target word. However, in line with our assumption of no language-specific pre-
processing, we just use word co-occurrence. Finally, distributional similarity is
calculated over these context vectors using cosine similarity.

6.1.2 Calculating compositionality

The procedure of calculating the compositionality is similar to what we used in
§4.1.2: after translating theMWE and its components intomultiple languages and
measuring the distributional similarity between the translations of theMWE and
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its components (Figure 1), we find the best languages according to the training
set. Then, we combine the scores from those best languages and finally calculate
a combined compositionality score from the individual distributional similarities
between each component word and the MWE. Based on our findings in §4.1.2,
we combine the component scores using the weighted mean (Figure 2):

Compositionality = 𝛼𝑠1 + (1 − 𝛼)𝑠2 (13.11)

where 𝑠1 and 𝑠2 are the scores for the first and the second component, respectively.
We use different 𝛼 settings for each dataset, based on the settings from §4.1.2.

We experiment with a range of methods for calculating compositionality, as
follows:

CSL1: calculate distributional similarity using only distributional similarity in
the source language corpus. (This is the approach used by Reddy et al.
(2011), as discussed in §2.)

CSL2N: exclude the source language and compute the mean of the distributional
similarity scores for the best-𝑁 target languages.The value of𝑁 is selected
according to training data, as detailed in §6.1.3.11

CSL1+L2N: calculate distributional similarity over both the source language (CSL1)
and the mean of the best-𝑁 languages (CSL2N), and combine via the arith-
metic mean.12 This is to examine the hypothesis that using multiple target
languages is better than just using the source language.

CSSVR(L1+L2): train a support vector regressor (SVR: Smola & Schölkopf (2004))
over the distributional similarities for all 52 languages (source and target
languages).

CSstring: calculate string similarity using the LCS-basedmethod of §4. LCS is cho-
sen because, in general, it performs better than the other string similarity
measures.

11In the case that no translation (direct or indirect) can be found for a given source language
term into a particular target language, the compositionality score for that target language is
set to the average across all target languages for which scores can be calculated for the given
term. If no translations are available for any target language (e.g. the term is not in PanLex)
the compositionality score for each target language is set to the average score for that target
language across all other source language terms.

12We also experimented with taking the mean over all the languages – target and source – but
found it best to combine the scores for the target languages first, to give more weight to the
source language.

363



Bahar Salehi, Paul Cook & Timothy Baldwin

CSstring+L1: calculate the mean of the string similarity (CSstring) and distribu-
tional similarity in the source language.

CSall: calculate the mean of the string similarity (CSstring) and distributional sim-
ilarity scores (CSL1 and CSL2N).

6.1.3 Selecting target languages

We experiment with two approaches for combining the compositionality scores
from multiple target languages.

First, in CSL2N (and CSL1+L2N and CSall that build off it), following the ap-
proach from §4.1.3, we use training data to rank the target languages according
to Pearson’s correlation between the predicted compositionality scores and the
gold-standard compositionality judgements. However, in this case, based on this
ranking, we take the best-𝑁 languages (instead of the best-10 languages as in
§4.1.3) and again combine the individual compositionality scores by taking the
arithmetic mean. We select 𝑁 by determining the value that optimises the corre-
lation over the training data. In other words, the selection of 𝑁 and accordingly
the best-𝑁 languages are based on nested cross-validation over training data,
independently of the test data for that iteration of cross-validation.

Second in CSSVR(L1+L2), we take the compositionality scores from the source
and all 51 target languages, combine them into a feature vector, and train an SVR
over the data using LIBSVM.13

6.2 Results

All experiments are carried out using 10 iterations of 10-fold cross validation,
randomly partitioning the data independently on each of the 10 iterations, and
averaging across all 100 test partitions in our presented results (Table 6). In the
case of CSL2N and other methods that make use of it (i.e. CSL1+L2N and CSall),
the languages selected for a given training fold are then used to compute the
compositionality scores for the instances in the test set.

Figure 4 shows histograms of the number of times each 𝑁 is selected over
100 folds on ENC, EVPC and GNC datasets, respectively. From the histograms,
𝑁 = 6, 𝑁 = 15 and 𝑁 = 2 are the most commonly selected settings for ENC,
EVPC and GNC, respectively. That is, multiple languages are generally used, but
more languages are used for English VPCs than either of the compound noun
datasets.

13http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 6: Pearson’s correlation on the ENC, EVPC and GNC datasets

Method Summary of the Method ENC EVPC GNC

CSL1 Source language 0.700 0.177 0.141
CSL2N Best-𝑁 target languages 0.434 0.398 0.113
CSL1+L2N Source + best-𝑁 target languages 0.725 0.312 0.178
CSSVR(L1+L2) SVR (Source + all 51 target languages) 0.744 0.389 0.085

CSstring String Similarity 0.644 0.385 0.372
CSstring+L1 CSstring +CSL1 0.739 0.360 0.353

CSall CSL1 + CSL2N + CSstring 0.732 0.417 0.364
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Figure 4: Histograms displaying how many times a given 𝑁 is selected
as the best number of languages over each dataset. For example, ac-
cording to the GNC chart, there is a peak for 𝑁 = 2, which shows that
over 100 folds, the best-2 languages achieved the highest correlation
on 18 folds.

Further analysis reveals that 32 (63%) target languages for ENC, 25 (49%) target
languages for EVPC, and only 5 (10%) target languages for GNChave a correlation
of 𝑟 ≥ 0.1with gold-standard compositionality judgements. On the other hand, 8
(16%) target languages for ENC, 2 (4%) target languages for EVPC, and no target
languages for GNC have a correlation of 𝑟 ≤ −0.1.
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6.2.1 ENC results

English noun compounds are relatively easy to identify in a corpus,14 because the
components occur sequentially, and the only morphological variation is in noun
number (singular vs. plural). In other words, the precision for our tokenmatching
method is very high, and the recall is also acceptably high. Partly as a result of
the ease of identification, we get a high correlation of 𝑟 = 0.700 for CSL1 (using
only source language data). Using only target languages (CSL2N), the results drop
to 𝑟 = 0.434, but when we combine the two (CSL1+L2N), the correlation is higher
than using only source or target language data, at 𝑟 = 0.725.Whenwe combine all
languages using SVR, we achieve our best results on this dataset of 𝑟 = 0.744, an
improvement over the previous state of the art of Reddy et al. (2011) (𝑟 = 0.714).
These last two results support our hypothesis that using translation data can
improve the prediction of compositionality.The results for string similarity on its
own (CSstring, 𝑟 = 0.644) are slightly lower than those using only source language
distributional similarity, but when combined with CSL1+L2N (i.e. CSall) there is a
slight rise in correlation (from 𝑟 = 0.725 to 𝑟 = 0.732).

6.2.2 EVPC results

English VPCs are hard to identify. As discussed in §2, VPC components may
not occur sequentially, and even when they do occur sequentially, they may not
be a VPC. As such, our simplistic identification method has low precision and
recall (hand analysis of 927 identified VPC instances would suggest a precision of
around 74%). There is no question that this is a contributor to the low correlation
for the source language method (CSL1; 𝑟 = 0.177). When we use target languages
instead of the source language (CSL2N), the correlation jumps substantially to
𝑟 = 0.398.

When we combine English and the target languages (CSL1+L2N), the results are
actually lower than just using the target languages, because of the high weight
on the target language, which is not desirable for VPCs, based on the source lan-
guage results. Even for CSSVR(L1+L2), the results (𝑟 = 0.389) are slightly below
the target language-only results. This suggests that when predicting the compo-
sitionality of MWEs which are hard to identify in the source language, it may
actually be better to use target languages only. The results for string similarity
(CSstring: 𝑟 = 0.385) are similar to those for CSL2N. However, as with the ENC

14Although see Lapata & Lascarides (2003) for discussion of the difficulty of reliably identifying
low-frequency English noun compounds.
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dataset, when we combine string similarity and distributional similarity (CSall),
the results improve, and we achieve the state of the art for the dataset.

In Table 7, we present classification-based evaluation over a subset of EVPC, bi-
narising the compositionality judgements in the manner of Bannard et al. (2003).
Our method achieves state-of-the-art results in terms of overall F-score and ac-
curacy.

Table 7: Results (%) for the binary compositionality prediction task on
the EVPC dataset

Method Precision Recall F-score (𝛽 = 1) Accuracy

Bannard et al. (2003) 60.8 66.6 63.6 60.0
CSstring 86.2 71.8 77.4 69.3
CSall 79.5 89.3 82.0 74.5

6.2.3 GNC results

German is a morphologically-rich language, with marking of number and case
on nouns. Given that we do not perform any lemmatisation or other language-
specific preprocessing, we inevitably achieve low recall for the identification of
noun compound tokens, although the precision should be nearly 100%. Partly
because of the resultant sparseness in the distributional similarity method, the
results for CSL1 are low (𝑟 = 0.141), although they are lower again when using
target languages (𝑟 = 0.113). However, when we combine the source and target
languages (CSL1+L2N) the results improve to 𝑟 = 0.178.The results forCSSVR(L1+L2),
on the other hand, are very low (𝑟 = 0.085). Ultimately, simple string similarity
achieves the best results for the dataset (𝑟 = 0.372), and this result actually drops
slightly when combined with the distributional similarities.

To better understand the reason for the lacklustre results using SVR,we carried
out error analysis and found that, unlike the other two datasets, about half of
the target languages return scores which correlate negatively with the human
judgements. When we filter these languages from the data, the score for SVR
improves appreciably. For example, over the best-3 languages overall, we get a
correlation score of 𝑟 = 0.179, which is slightly higher than CSL1+L2N.

We further investigated the reason for getting very low and sometimes neg-
ative correlations with many of our target languages. We noted that about 24%
of the German noun compounds in the dataset do not have entries in PanLex.
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This contrasts with ENC where only one instance does not have an entry in
PanLex, and EVPC where all VPCs have translations in at least one language
in PanLex. We experimented with using string similarity scores in the case of
such missing translations, as opposed to the strategy described in §3.2. The re-
sults for CSSVR(L1+L2) rose to 𝑟 = 0.269, although this is still below the correlation
for just using string similarity.

Our results on the GNC dataset using string similarity to measure the com-
positionality of the whole compound are competitive with the state-of-the-art
results (𝑟 = 0.45) using a window-based distributional similarity approach over
monolingual German data by adding the modifier and head predictions (Schulte
im Walde et al. 2013).15 Note, however, that their method used part-of-speech in-
formation and lemmatisation, where ours does not, in keepingwith the language-
independent philosophy of this research. Furthermore, as shown in §5, our string
similaritymeasure can be substantially improved onGNC by using amultilingual
dictionary with higher coverage for the expressions in this dataset.

7 Conclusion

This chapter presented an extension of two previous studies – Salehi & Cook
(2013) and Salehi et al. (2014) – that proposed supervised and unsupervised meth-
ods to predict the compositionality of MWEs based onmeasures of string similar-
ity between the translations of anMWE, and translations of its componentwords,
into many target languages, and based on distributional similarity between an
MWE and its component words, both in the original source language and under
translation.

In experiments using the string similarity approach, we showed that informa-
tion from translations into multiple target languages can be effectively combined
to give improvements over using just a single target language. We also showed
that string similarity measures which capture information about character se-
quences perform better than measures that do not. From the experiments on
unsupervised approaches, we learned that languages of the same family as the
source language cannot predict the compositionality of MWEs as well as the lan-
guages for which we have good translations coverage.

For distributional similarity, our experimental results showed that incorpo-
rating information from translations into target languages improved over using

15Additionally, Schulte imWalde et al. (2013) showed that their method achieves the state-of-the-
art results (𝑟 = 0.65) in predicting the compositionality of each individual component within
the compound.
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distributional similarity in just the source language. Furthermore, we learned
that there is a strong complementarity between approaches based on string and
distributional similarity.

Abbreviations
mwe multiword expression
enc English Noun Compound dataset of Reddy et al. (2011)
evpc English Verb-Particle Construction dataset of Bannard et al. (2003)
gnc German Noun Compound dataset of Schulte im Walde et al. (2013)
lcs longest common substring
lev1 Levenshtein
lev2 Levenshtein with substitution penalty
sw Smith Waterman algorithm
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