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The PARSEME Shared Task on the automatic identification of verbal multiword
expressions (VMWESs) was the first collaborative study on the subject to cover a
wide and diverse range of languages. One observation that emerged from the offi-
cial results is that participating systems performed similarly on each language but
differently across languages. That is, intra-language evaluation scores are relatively
similar whereas inter-language scores are quite different. We hypothesise that this
pattern cannot be attributed solely to the intrinsic linguistic properties in each lan-
guage corpus, but also to more practical aspects such as the evaluation framework,
characteristics of the test and training sets as well as metrics used for measuring
performance. This chapter takes a close look at the shared task dataset and the sys-
tems’ output to explain this pattern. In this process, we produce evaluation results
for the systems on VMWEs that only appear in the test set and contrast them with
the official evaluation results, which include VMWEs that also occur in the training
set. Additionally, we conduct an analysis aimed at estimating the relative difficulty
of VMWE detection for each language. This analysis consists of a) assessing the
impact on performance of the ability, or lack-thereof, of systems to handle discon-
tinuous and overlapped VMWEs, b) measuring the relative sparsity of sentences
with at least one VMWE, and c) interpreting the performance of each system with
respect to two baseline systems: a system that simply tags every verb as a VMWE,
and a dictionary lookup system. Based on our data analysis, we assess the suit-
ability of the official evaluation methods, specifically the token-based method, and
propose to use Cohen’s kappa score as an additional evaluation method.
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1 Introduction

Multiword expressions (MWEs) have been studied extensively due to the fact
that many natural language processing (NLP) pipelines depend on their correct
identification and processing (Sag et al. 2002). However, there has been rela-
tively little work on Verbal MWEs (VMWEs). The PARSEME! Shared Task on
VMWEs (Savary et al. 2017) was the first initiative focusing on the problem of
identifying VMWEs for a relatively large number of languages, 18 in total. This
initiative produced an array of annotated training and test sets for each language.
Using these training sets, shared task participants developed and trained VMWE-
identification systems, which were then evaluated on separate test sets also pro-
duced by PARSEME.

Several patterns have emerged from the evaluation results in this pioneer-
ing shared task. One is that individual systems tend to perform very differently
across languages (inter-language performance) and yet different systems per-
formed similarly in most languages (intra-language performance). In particular,
participating systems scored highest on Farsi, Romanian, Czech and Polish, and
lowest on Swedish, Hebrew, Lithuanian and Maltese, whilst ranging somewhere
in between for the rest of the languages. It has been observed that the inter-
language performance is positively correlated with the proportion of VMWEs
shared by the training and test sets in each language (Maldonado et al. 2017).
This observation suggests that the reported systems’ performance and ranking
could potentially be dependent on the proportion of shared VMWEs across lan-
guages. At the very least, it is clear that inter-language performance differences
cannot be attributed to linguistic differences among languages alone, but to par-
ticularities of the dataset that interplay with these linguistic differences.

This chapter conducts a detailed data analysis of the PARSEME dataset and the
official systems’ submissions in order to try to understand how these particular-
ities impact systems’ performance and to propose possible modifications to the
dataset in order to balance out said particularities among the language corpora.

To this end, we start our discussion in §2 by computing statistics for each
language to get a sense of their differences. We then measure the relative diffi-
culty in identifying VMWEs in each language corpus by focusing on three fac-
tors that could potentially pose challenges to the systems: 1) the relative sparsity
of VMWE:s in each language corpus (by measuring the proportion of sentences
with and without VMWEs); 2) the prevalence and significance of discontinuous
VMWEs and embedded (or overlapped) VMWEs; and 3) corpus similarity and
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5 Analysis and Insights from the PARSEME Shared Task dataset

homogeneity measures between the training and test portions for each language
section. We observe that the importance of these factors varies across languages:
while some are inherent to each language’s linguistic properties (e.g., proportion
of continuous vs discontinuous VMWEs or the dominant category of VMWZEs in
a language), others (e.g., relative sparsity of VMWEs) can be controlled by al-
tering the size of the training and test sets, the proportion of shared VMWEs
between these two sets, and, in general, the homogeneity of the distribution of
VMWEs in these sets for each of the languages.

We then turn our attention to the shared task official evaluation scores on the
participating systems in §3 and §4. In §3, we focus on the effect of the proportion
of shared VMWEs between the training and test sets in each language corpus. We
evaluate the systems on shared VMWEs and on VMWEs occurring exclusively
in the test set. We also introduce two baseline systems (a system that simply tags
every verb as a VMWE and a simple dictionary look-up system) and observe that
the performance of the participating systems follows trends that the performance
of these baselines shows.

In §4, we concentrate on the evaluation metrics used in the shared task: one
that measures the ability of retrieving full VMWEs (MWE-based evaluation) and
another that gives credit to systems on partially identified VMWEs (Token-based
evaluation). We observe that the Token-based evaluation measure gives more
weight to long VMWESs and, in addition, can be exploited by a system that simply
detects verbs. Lastly, we use Cohen’s k inter-annotator agreement measure as
an evaluation metric based on the intuition that it provides a ‘chance-corrected’
degree of similarity between a system output and a gold standard.

In §5, we conclude that the PARSEME VMWE dataset is a valuable resource
for evaluating VMWE identification systems as long as certain variables are con-
trolled for and purpose-specific evaluation frameworks are considered. We also
propose avenues for future work.

Before we delve into the analysis and discussion, it should be mentioned that
systems were considered to be participating in one of two separate tracks under
the original shared task rules: a) an open track in which participants were free
to use any external data (other than the training data provided) to train and de-
velop their systems, and b) a closed track, where participants were allowed to use
the provided training data only. Given that only one system (LATL) participated
in the open track and for only one language (French), this chapter completely
ignores the open/closed distinction and compares all systems on the same eval-
uation scores.
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2 Shared task dataset

This section explores several numerical properties of the dataset developed for
the shared task in order to gain an insight into differences among languages and
to identify potential difficulty factors in the corpora. We consider difficulty fac-
tors to be corpus-specific characteristics (such as corpus size, sparsity of VMWEs
or corpus heterogeneity) that could potentially hinder an algorithm’s ability to
identify VMWEs. We assess a factor’s degree of difficulty by observing the over-
all systems’ performance on languages that present the factor in question, in
comparison to languages that do not present that factor. The performance of
the systems is measured by the official shared task evaluation F1 scores, shown
in Table 1. That table also contains the averages all systems’ scores for a given
language (avg column) and the ranks of the languages according to these aver-
ages (rnk column). Recall that two evaluation modalities were measured in the
shared task: MWE-based evaluation, which counts as a success the matching of
a full VMWE, and Token-based evaluation, which gives partial credit to partially
matched VMWEs. Figure 1 summarises these scores per language as box plots.
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Figure 1: Box plots summarising F1 scores achieved by all systems
on each language, using the MWE-based and Token-based evaluation
modalities
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5 Analysis and Insights from the PARSEME Shared Task dataset

Table 1: F1 evaluation scores by language and system with averages
(avg), rank (rnk) in Token-based, MWE-based and Cohen’s k evalua-
tions. Baselines: dictionary look-up (BD) and verb detection (BV).

ADAPT LATL LIF MUMULS RACAI SZEGED TRANSITION avg rnk BD BV

BG Token-based 59.16 66.15 62.66 4 4744
MWE-based 34.68 61.27 4798 6 34.67
Cohen’s x 21.36 53.57 3747 6 2127
CS Token-based 72.86 23.52 70.76 73.65 60.20 5 64.34 20.41
MWE-based 57.72 16.67 64.18 71.67 5256 4 5191 O
Cohen’s 46.49 8.82 55.04 64.36 43.68 5 37.87 -18.54
DE Token-based 40.48 34.45 28.30 45.45 41.09 3795 13 40.70 28.52
MWE-based 22.80 21.14 19.17 40.53 41.10 28.95 13 41.34 9.22
Cohen’s 5.86 5.01 5.82 24.97 26.44 13.62 16 26.42 -15.49
EL Token-based 43.14 42.17 38.71 40.75 46.88 42.33 12 3416 9.14
MWE-based 3134 23.08 31.74 31.88 40.07 3162 12 21.81 0.02
Cohen’s 23.28 12.46 25.2 22.9 3157 23.08 11 9.46 -741
ES Token-based 49.17 48.75 30.93 44.18 58.39 46.28 9 5097 15.56
MWE-based 44.33 33.62 30.06 33.99 57.39 39.88 9 4422 0
Cohen’s x 35.84 21.18 23.41 17.81 48.83 3091 9 32.7 -13.41
FA Token-based 85.36 90.20 8778 1 6575 47.73
MWE-based 80.08 86.64 8336 1 5592 0
Cohen’s x 63.13 74.77 68.95 2 22.71 -50.01
FR Token-based 6152 54.61 10.00 29.40 50.09 33.64 60.28 42.79 10 45.73 18.28
MWE-based 50.88 47.46 10.82 9.29 47.55 5.73 57.74 32.78 11 38.42 0.21
Cohen’s x 4012  33.77 798 -4.75 38.74  -14.42 48.98 21.49 13 24.19 -15.99
HE Token-based 0.00 31.30 15.65 16 33.80
MWE-based 0.00 33.44 16.72 16 37.44
Cohen’s x 0.00 27.74 13.87 14 32.69
HU Token-based 66.10 68.86 62.26 70.81 67.47 6710 3 68.13 12.49
MWE-based  66.89 62.21 65.08 74.01 69.87 6761 3 68.09 2.44
Cohen’s x 50.6 42.13 49.45 60.04 52.03 50.85 3 49.01 -35.81
IT Token-based 25.11 18.24 34.90 43.57 30.46 14 37.85 14.4
MWE-based 23.09 16.90 15.31 39.90 23.80 15 29.03 0
Cohen’s x 14.26 10.01 -10.01 25.33 9.9 17 827 -14.44
LT Token-based 0.00 25.33 12.67 17 28.85
MWE-based 0.00 28.35 14.18 17 30.08
Cohen’s x 0.00 27.25 13.62 15 28.82
MT Token-based 8.87 0.00 4.69 16.29 746 18 1142 6.79
MWE-based  6.41 0.00 5.00 14.44 6.46 18 6.75 0.02
Cohen’s 3.5 0.00 2.99 6.6 327 18 -525 -5.74
PL Token-based 72.74 69.77 0.00 70.56 5327 7 7440 18.33
MWE-based 67.95 59.61 0.00 69.09 4916 5 6998 0
Cohen’s 61.53 5133 0.00 62.72 439 4 63.46 -15.01
PT Token-based 70.18 60.01 30.79 70.94 5798 6 59.97 14.32
MWE-based 58.14 44.05 0.99 67.33 42.63 8 5449 0
Cohen’s x 5135 35.98 -11.52 62.03 3446 7 46.35 -11.86
RO Token-based 81.90 83.58 77.99 79.12 80.65 2 63.76 11.51
MWE-based 73.38 77.21 77.75 75.31 7591 2 5774 O
Cohen’s x 71.28 75.35 76.12 73.18 7398 1 53.75 -7.32
SL Token-based 45.06 45.62 33.20 46.55 42.61 11 28.47 0.08
MWE-based 37.08 31.08 30.19 43.22 3539 10 2165 O
Cohen’s x 29 20.49 23.45 33.17 26.53 10 5.23 -0.07
SV Token-based 31.49 26.69 3119 30.70 30.02 15 8.94 13.23
MWE-based 30.32 25.17 27.03 30.36 2822 14 132 0
Cohen’s x 24.44 20.78 16.56 24.75 21.63 12 -5.62 -10.29
TR Token-based 52.85 45.40 51.59 55.28 5128 8 16.60 10.45
MWE-based 42.83 34.49 51.76 55.40 4612 7 595 0
Cohen’s x 25.88 19.05 38.88 42.14 3149 8 -8.57 -17.81
avg Token-based 53.79 54.61 10.00  40.71 41.12 36.86 54.10 43.40 16.08
MWE-based 46.22 4746 10.82  29.81 38.71 25.50 52.37 3760 0.79
Cohen’sx 3644 3377 798 20.56  30.82 11.82 43.64 24.6 -16.92
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2.1 Corpora sizes, VMWE sparsity and frequency distributions

We start by discussing the sizes of the training and test portions in each language
corpus, depicted in Figure 2. Sizes are measured in terms of the total number
of sentences. Traditionally, corpora sizes are discussed in terms of number of
words, rather than number of sentences. We use number of sentences instead
for a variety of reasons: 1) Each language corpus in the dataset consists of a
collection of individual sentences. So the sentence is a natural unit to describe
the dataset. 2) A sentence is expected to have a single main verb. On average, we
can expect to have a little more than one verb per sentence. However, we would
like to know what this average is for the case of verbal MWEs (VMWEs). That is,
we would like to know how sparse VMWEs are in a given language corpus, and
what impact this sparsity may have. 3) Measures such as the rate of VMWEs per
n tokens could also be used, but are less linguistically motivated. Finally, 4) the
training-to-test size ratios in terms of number of words are largely the same in
this dataset as in terms of number of sentences.

Notice that Romanian and Czech have by far the largest training sets, dwarf-
ing corpora of all other languages. This seems to work in favour of these two
languages as, on average, Romanian ranked 2nd place in both evaluation modali-
ties and Czech ranked at 4th and 5th places in the MWE-based and Token-based
modalities, respectively. Swedish is the language with the smallest training set
(only 200 sentences). The average F1 score of systems participating in Swedish
is around 30% for both evaluation modalities. Indeed, the size of the training set
is somewhat positively correlated with the average system evaluation scores for
each language. The Pearson correlation coefficients for MWE-based and Token-
based evaluations are 0.33 and 0.35, respectively.

The size of the test set relative to its corresponding training set varies widely
across languages. The test-to-training proportions vary from 8% to 60% for most
languages, except for Maltese (79%), Spanish (85%) and most notably, Swedish,
with a test set about 8 times larger than its training set.? Although both Maltese
and Swedish performed rather poorly (Maltese actually ranked last), there is no
clear pattern between the test-to-training proportion of a language corpus and
the performance of systems. In fact, Spanish ranked exactly in the middle at 9th
place. These proportions were found to be mildly negatively correlated against
MWE-based and Token-based evaluations: -0.20 and -0.23, respectively (Pearson
correlation coefficients).

2200 training sentences vs. 1600 test sentences, making the proportion of the training set almost
invisible in Figure 2
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Figure 2: Relative sizes (in sentences) of the training and test portions
of each language corpus.
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Figure 3: VMWE Sparsity — Percentage of sentences with VMWEs; hor-
izontal lines depict average percentages across languages for training
(TRN) and test? TST) sets, respectively.
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Figure 3 shows how sparse VMWEs are in the language corpora. VMWE spar-
sity can be understood as the inverse of the proportion of sentences that have
at least one VMWE. The figure shows the proportion of VMWEs within each set
(training and test) using percentages. The graphs show that language corpora
differ widely in their VWME sparsity. The overall proportion average (depicted
by the two horizontal lines in the figure) is 24% and 23% for the training and test
sets, respectively. Only Farsi and Hungarian are well above this average, and
German is slightly above. For most languages, the vast majority of sentences
do not contain a single VMWE. Whilst sentences without VMWE examples are
indeed needed by machine learning algorithms, too few examples could hinder
learning processes due to class imbalance. Indeed, there is a strong positive corre-
lation between the proportion of sentences with VMWEs and the average system
evaluation scores: 0.58 Pearson correlation coefficient against MWE-based eval-
uation and 0.56 against Token-based evaluation. Lithuanian and Maltese are the
two lowest scoring languages in both evaluation modalities (see Table 1 and Fig-
ure 1). They are two of the three languages with the highest VMWE sparsity. The
third language is Romanian, which turns out to be the second highest scoring
language. Romanian is, as previously mentioned, the language with the largest
amount of training data. The Romanian corpus’ large volume seems to outweigh
its high VMWE sparsity in systems’ performance.

Another feature which seems to help systems perform well in the Romanian
corpus is the frequency distribution of its VMWEs, as shown in Figure 4. This
figure shows how many VMWE types occur at each VMWE frequency and how
many of those VMWEs are successfully retrieved by the systems on the test por-
tion of each language corpus. The grey bars on each chart show the total number
of VMWE types occurring at each frequency inscribed on the x axis. The coloured
bars count the number of VMWE types at each frequency that were fully detected
by each system. This figure shows that Romanian VMWEs are well distributed:
whilst Romanian hapax legomena (VMWEs occurring only once) dominate with
208 instances, there are many VMWEs with higher frequencies. The total num-
ber of VMWEs that occur more than once is 292, with frequencies up to 31 well
represented. By contrast, 88 Lithuanian VMWEs appear only once and the rest,
12 of them, just twice! For Maltese, 82.57% of its VMWEs are hapax legomena.
The remaining 17.43% have frequencies between 2 and 9. In short, VMWEs in
the Lithuanian and Maltese corpora are not as well distributed by frequency as
those in the Romanian corpus. The less frequent a VMWE is, the less opportuni-
ties a system has to learn it. So if the majority of VMWEs in a corpus are of low
frequency (as in Lithuanian and Maltese), it will be harder for a system to learn
them, which will lead to potentially low performance scores for the system.
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Figure 4: Distribution of VMWEs of different frequencies on the test
set (grey bars) and the proportion of such VMWEs detected by systems
(coloured bars) based on full MWE-based detection.
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As an aside, the grey bars in Figure 4 show, for most languages, that the ma-
jority of VMWEs are hapax legomena and that the number of VMWEs occurring
more frequently decreases dramatically as their frequency increases. This is the
hallmark of the Zipfian distribution, which is something to be expected with lex-
ical phenomena (Manning & Schiitze 1999: pp. 22-6). This is not the usual way
in which this distribution is traditionally plotted from data. However, it can be
seen that most charts follow it approximately.

The issue of frequency distribution is important. Hungarian and Spanish are
modest in size in comparison with Lithuanian and Maltese (see Figure 2), and
yet the systems perform better in the former languages (especially in Hungarian)
than in the latter languages. Figure 4 reveals that both Hungarian and Spanish
are well distributed by frequency. Hungarian, despite having a smaller test set,
is in fact even better distributed by frequency and has a lower VMWE sparsity
(Figure 3) than Spanish. It obtains a 67 average F1 score whereas Spanish gets
an F1 score average of 40-46, in both evaluation modalities (see avg column in
Table 1).

From these observations, we can point out that language corpora with small
amounts of training data, especially when combined with high VMWE sparsity
and a poor frequency distribution, tend to obtain low scores in most systems. So
increasing the size of training and test data is definitely a recommendation to fol-
low. VMWE sparsity can be reduced by simply trying to balance out sentences
with VMWEs against sentences without VMWEs. However, corpus designers
should be cautious of doing this, as it could lead to a corpus that does not re-
flect the real distribution of VMWEs in the language and/or domain in question.
Perhaps, it should be the task of system developers to design systems capable
of coping with the natural VMWE imbalance/sparsity in a language corpus.® Im-
proving the VMWE frequency distribution in language corpora could also help
systems. Ensuring that several examples of each VMWE type are included in the
training data will be a challenge, however, due to the natural Zipfian tendency
of a majority of VMWEs to appear only once in any given corpus. We propose
offsetting this tendency by aiming to compile a corpus where the total frequency
of VMWE types that occur frequently enough outnumber the total frequency of
VMWE types that occur less frequently. That is, if 6 is the minimum frequency a
VMWE needs to have in order to be considered to have enough frequency,* then
we could ensure that the language corpus satisfies the condition:

*Systems could, for example, run a classifier to distinguish sentences that contain VMWEs from
sentences that do not, and train/run their VMWE extractors only on sentences that do.

40, a minimum desirable frequency, is a parameter to be set empirically, with 6 = 2 a reasonable
default value.
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where f(v) is the frequency of VMWE v in the corpus. Note that a corpus with
a good VMWE frequency distribution cannot be created by simply increasing the
size of the corpus, but by better selecting sentences that are good examples of as
many VMWEs as possible.

2.2 VMWEs shared between the training and test sets

Maldonado et al. (2017) noticed that the proportion of VMWESs shared between
the training set and the test set of a language corpus is strongly positively cor-
related with the performance scores achieved by participating systems on that
language test set (see also Savary et al. 2018 [this volume] §6.3). The most likely
explanation is that when evaluated on the test set, machine learning systems
would tend to perform better on VMWE examples they encountered in the train-
ing set (i.e. exact VMWEs that systems have already seen during training) than on
VMWE examples that systems encounter for the first time in testing. The higher
the proportion of shared/seen VMWE:s is in one language, the higher a machine
learning system can be expected to perform on that language. Figure 5 depicts
this relationship by plotting the score achieved by each system on each language
against the proportion of shared/seen VMWEs in that language. The languages
on the x axis are sorted and labelled by this proportion. Notice the near-linear
relationship between this proportion and the system scores.

It is of interest to evaluate systems on non-shared/unseen VMWEs only. This
can be done by using the official systems’ outputs, which were kindly provided
to us by the shared task organisers. In order to evaluate unseen VMWESs only,
the labels for seen VMWEs in the systems’ outputs and the gold standards were
cleared (i.e. changed to the underscore °_’ flag) so that they would be ignored by
the official evaluation scripts. Figure 6 shows the systems’ performance scores
when evaluated in this manner on unseen VMWEs only. Notice that the x axis
was kept from Figure 5 to enable an easy visual comparison between both figures.

The first thing to notice is that all systems’ scores go down dramatically for all
languages. Notice however that for Farsi, the TRANSITION and ADAPT scores
do not fall as dramatically as in the other languages. At first glance, this can
be associated with the density of annotated instances of VMWEs in the Farsi
corpus, i.e., Farsi has the lowest VMWE sparsity in the dataset (as discussed in
§2.1). On the other hand, the second least VMWE-sparse language, Hungarian,
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Figure 5: System evaluation scores (MWE-based, left; Token-based,
right) for each language against the proportion (percentage) of test
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Figure 6: System evaluation scores (MWE-based, left; Token-based,
right) on non-shared/unseen VMWEs only
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did not fare nearly as well in this unseen VMWE evaluation. Taking a closer
look at Farsi VMWESs, we observe that they show a higher level of collostructional
regularity® compared to VMWEs in other languages. We observe that 86% of Farsi
VMWEs are of length 2 and the last token in all Farsi VMWZEs is always a verbs,
while this is not the case for other languages such as Hungarian. In addition,
verbs constitute a relatively small vocabulary in Farsi and as a consequence, the
same set of verbs are used repeatedly in various VMWEs. For example, the 2,707
annotated VMWEs in the Farsi training set end with verbs of 46 different lemmas,
and the 500 annotated instances in the test set end with 34 lemmas. Among these
34 different lemmas, only 4 do not appear in the training set. Last but not least,
most of these verb lemmas are strong indicators of the presence of VMWEs, too.
The overall occurrences of these lemmas in the Farsi corpus is 6,969, from which
3,207 are part of a VMWE, i.e., nearly half of them (46%). More precisely, 16 of
these lemmas (with 29 occurrences) appear only as constituents of VMWEs; most
importantly, for the most frequent lemma in VMWE:s (the past and present forms
of the infinitive o> s /keerdeen/ ‘to make/to do’, a light verb, which appears as the
verb in 1,096 VMWEs) this proportion is 97% (i.e., out of 1,128 occurrences of
this verb, only 32 do not surface as VMWE). To this, we can add observations
concerning syntactic patterns in which VMWEs are used, e.g., the light verb o>
/keerdeen/ usually forms a transitive VMWE in which the non-verbal component
of the VMWESs appear right after the adposition |, /ra/ (i.e., which signals the
presence of the syntactic object). We maintain that these exemplified regularities
can justify the obtained results over the Farsi corpus.

In general, however, it is fair to expect that systems will tend to perform worse
on VMWEs they did not see in training.

2.3 Discontinuous VMWESs and embedded/overlapped VMWEs

Two innovations in the PARSEME shared task were discontinuous VMWEs and
embedded or overlapped VMWEs (see Savary et al. 2018 [this volume] §6.3).

Figure 7 shows that for most languages, the majority of VMWZEs are contin-
uous. For Czech and Turkish, there is about a 50-50 proportion between con-
tinuous and discontinuous VMWEs. For many other languages, the proportion
of discontinuous VMWEs is considerable (German, Greek, French, Polish, Por-
tuguese, Romanian, Slovenian). There is therefore a clear advantage in designing
systems capable of detecting discontinuous VMWEs.

Degree to which words tend to form (appear with) grammatical constructions (Stefanowitsch
& Gries 2003).
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The proportion of embedded/overlapped VMWESs, shown in Figure 8, is very
low across languages, with an average of around 2.3% in both training and test
portions. Hebrew is the language with the highest rate of embedded VMWEs at
only 12-14.5%. Some languages do not even register a single embedded VMWE.
Because of these low numbers, a system not designed to deal with embedded
VMWEs will not be severely penalised. We therefore do not consider embedded
VMWEs to be a difficulty factor in this dataset, with the exception of Hebrew.

2.4 Relative training-test corpus heterogeneity

The evaluation paradigm followed in the PARSEME shared task dictates that sys-
tems must be evaluated on a strictly unseen test set, guaranteeing fairness to all
participating system developers. However, a valid expectation is that the data
that systems will be tested on should be roughly of the same kind as the data
they were trained on. The training and test portions of a language corpus should
be fairly homogeneous.

Kilgarriff & Rose (1998) introduced a statistical metric to estimate the similarity
of two corpora of similar size by computing the y? score of the n most frequent
words in the corpora. The lower this score, the less variability between the cor-
pora and thus the more similar they are. They also adapted this similarity score
to measure the homogeneity of a single corpus by computing y? scores on pairs
of similarly sized partitions of the corpus and averaging the individual y? scores.
The lower this averaged score is, the more homogeneous the corpus is deemed to
be. Here, we adapt this homogeneity score in order to estimate the homogeneity
between the training and test sets of a language corpus. This is done by com-
puting similarity scores of training set partitions against similarly-sized test set
partitions and averaging them together to obtain a single cross-set homogeneity
score. The higher this score is, the more heterogeneous the training and test sets
are. In order to allow comparisons across languages, this cross-set homogeneity
score is normalised by dividing it by the average of the within-training set and
within-test set homogeneity scores, calculated from the training and test sets sep-
arately. We call the result of this division, the heterogeneity ratio of a language
corpus. Table 2 sorts the languages by their heterogeneity ratio. The detailed al-
gorithm used is listed in Algorithm 1.

French comes out on top. Its heterogeneity ratio of 4.31 can be interpreted as
the number of times that the training-test sets are more heterogeneous than the
training and test sets on their own. This suggests that the French test was not
derived from the same sources as the training set, or at least not in the same
proportions.
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Table 2: Heterogeneity ratios between training and test sets

FR TR IT PT RO CS PL HU LT DE FA BG SL ES SV HE EL MT

431 2.89 253 203 2.03 192 177 173 162 159 156 151 139 128 125 118 115 1.03

Algorithm 1 Computing a language heterogeneity ratio

1: R «— number of repetitions

2: n <— number of words in a partition
3: hr_sum < 0
4: r<—0

5: while r < Rdo
6: trn «<— partition_set(n, shuffle_sentences(training_set))
7 tst <— partition_set(n, shuffle_sentences(test_set))

8

9: » Cross homogeneity:
10: s« 0
11: c<—0
12: for i = 1to |trn| do
13: for j = 1to |tst| do
14: s «— s+ corpus_similarity(partition,, partition;)
15: c—c+1
16: cross «<— s/c
17:
18: » Within-training homogeneity:
19: s« 0
20: c<—0
21: for i = 1to |trn| do
22: for j =i+ 1to|trn|do
23: s «— s+ corpus_similarity(partition,, partition;)
24: c«—c+1
25: within_trn < s/c
26:
27: » Within-test homogeneity:
28: s« 0
29: c«—20
30: for i = 1to |tst| do
31: for j=1+1to|tst| do
32: s «— s+ corpus_similarity(partition,, partition;)
33: c—c+1
34: within_tst «— s/c
35:
36: » Heterogeneity ratio:
37: hr «<— cross/((within_trn + within_tst)/2)
38: hr_sum <— hr_sum + hr
39:
40: r<—r+1

41: return hr_sum/R
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French is followed by Turkish, Italian, Portuguese and Romanian, with ra-
tios around 2. The rest of the languages are closer to 1, reflecting a more bal-
anced/homogeneous partitioning between the training and the test corpora. No-
tice however that systems participating in French, Turkish, Italian, Portuguese
and Romanian did relatively well despite their heterogeneity. Nonetheless, adopt-
ing a similar corpus selection and balancing policy across languages, like mixing
the corpora before splitting them into training and test portions in comparable
proportions, could be a way to put all languages on a similar footing.

3 Participating systems and baselines

This section focuses on the actual systems in the competition and introduces two
baseline systems: (i) a dictionary lookup-based system that attempts to match
known VMWZEs against the test set, (ii) a system that flags every verb in the test
set as a VMWE.

3.1 Overview of participating systems

Seven systems participated in the PARSEME shared task. Their performance was
presented and discussed in §2, although not individually. The techniques em-
ployed by the different systems can be summarised as follows:

« ADAPT (Maldonado et al. 2017) uses a Conditional Random Fields (CRF) se-
quence labelling approach to identify the tokens of VMWEs. The features
that helped most were dependency-based: the token’s head, dependency
relation with the head and the head’s part of speech (POS) tag, along with
standard bigram and trigram features commonly used in named-entity
recognisers. The ADAPT system did not attempt to classify VMWEs by
category. An extended version of this system is described in Moreau et al.
(2018 [this volume]).

« RACAI (Boros et al. 2017) also employs a CRF sequence labelling approach
using lemma and POS tag features. However, this system conducts the
VMWE identification task in two steps: head labelling (identifying the
verb) and tail labelling (identifying the words linked to the head). The
RACAI system does attempt to classify the VMWEs by their category.

« MUMULS (Klyueva et al. 2017) also models the VMWE identification prob-
lem as a sequence labelling task, but using a recurrent neural network via
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the TensorFlow package. As input features, they build embeddings of 100
dimensions from the concatenation of a token’s surface form, lemma and
POS tag.

« TRANSITION (Al Saied et al. 2017) is a greedy transition-based system
of the kind typically used in parsing. This system does not have a syntax
prediction module, however, and focuses on the lexical analysis phase of
the parsing mechanism. An extended version of this system is described
in Al Saied et al. (2018 [this volume]).

o LIF (Savary et al. 2017) also employs a probabilistic transition-based tech-
nique. The team focused on French light-verb constructions.

+ SZEGED (Simko et al. 2017) trains a dependency parser on a modified
training set in which the dependency relation label of tokens belonging
to a VMWE were relabelled with the corresponding VMWE category la-
bel. Simk¢ et al. (2018 [this volume]) describes an extended version of this
system.

« LATL (Nerima et al. 2017) uses a rule-based constituent parser that pri-
oritises parsing alternatives of known collocations, and uses its parsing
features to detect known collocations even if they are in a different word
order or if they are discontinuous.

Not all systems participated in all languages. French was the language covered
by most systems. The languages least covered were Bulgarian, Hebrew, Lithua-
nian (covered only by MUMULS and TRANSITION) and Farsi (covered by ADAPT
and TRANSITION). Since only raw surface tokens and no syntactic dependency
information or POS tags were provided for Bulgarian, Hebrew and Lithuanian,
most system developers decided not to cover them. The systems that covered
most languages were TRANSITION (all 18 languages), ADAPT (15), MUMULS
(15), RACAI (12) and SZEGED (9). LATL and LIF focused on French only.

In Token-based evaluation, ADAPT ranked first on two languages (French and
Polish), while MUMULS and SZEGED ranked first on Romanian and Hungarian,
respectively. In MWE-based evaluation, TRANSITION beat all systems in all lan-
guages, except Hungarian (won by SZEGED) and Romanian (won by RACAI and
very closely followed by MUMULS).

The ADAPT and the RACAI systems are clearly related, as are the TRANSI-
TION and the LIF systems. These four systems, along with the MUMULS system,
are all probabilistic sequence labelling methods, although quite different in their
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implementation details. It is interesting to see that, on average (see bottom row
in Table 1), ADAPT and TRANSITION performed very similarly in the Token-
based evaluation, while MUMULS and RACALI also performed very similarly in
the same average evaluation.

3.2 Baseline systems

This section proposes two types of baseline systems that put into perspective
the participating systems’ performance. One such baseline system is a simple
dictionary lookup, which collects all VMWESs encountered during training and
simply attempts to match collected VMWEs in the test set. The other is a baseline
system which flags every verb as a VMWE. More details on these two baselines
and their results are described in what follows.

Dictionary lookup baseline The implemented system is very simplistic: it at-
tempts to match VMWE lemmas from the training file in the test file sequentially.
If lemmas are not available, then the token’s surface form is used. Discontinuous
VMWESs are matched in the test file as long as they appear in the same order
as in the training file: intervening words are ignored when collecting VMWEs
from the training file and when matching VMWE:s in the test file. If one VMWE
appears in more than one word order in the training file, each word order will be
considered to be a separate VMWE. Tokens are marked as belonging to a VMWE
only if a full match is detected; partial matches are not flagged. This is to avoid
making too many, potentially spurious, partial matches. Embedded/overlapped
VMWEs are attempted by using separate VMWE matching automata.

Notice that the maximum performance that can be achieved by this lookup
system is determined by the proportion of shared VMWEs between the training
and the test set in a language corpus. This proportion of shared VMWEs, indi-
cated as percentages under the language labels in Figure 5 and Figure 6, is thus
the maximum recall such a system can achieve.

The actual F1 score for the dictionary lookup system described here appears in
the BD column in Table 1. It is evident from this table that this simple baseline is
quite competitive, beating some of the participating systems in several languages.
In fact, it beat all systems on both evaluation modalities in Hebrew, Lithuanian
and Polish, and on MWE-based evaluation in German.

Verb baseline As mentioned earlier, this system simply flags each verb in the
test set as a VMWE. Column BV in Table 1 shows the F1 scores for the verb base-
line. Notice that no scores are supplied for Bulgarian, Hebrew and Lithuanian.
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This is because no POS tag was provided in these languages’ datasets. So we
omit them from this discussion.

For BV, notice that the Token-based F1 scores range between 10 to 47 for most
languages. This is a relatively high score range. Table 3 provides precision and
recall details for these Token-based scores.

Table 3: Token-based scores for the Verb baseline

Language CS DE EL ES FA FR HU IT MT PL PT RO SL SV TR

P-token 13.57 20.87 5.14 9.58 48.64 11.52 9.29 8.87 3.74 1142 855 6.61 417 7.8 6.54
R-token 41.13 45.02 40.85 41.49 46.86 44.13 19.08 38.26 36.81 46.31 44.1 44.3 44.59 43.59 25.97
Fil-token 20.41 28.52 9.14 15.56 47.73 18.28 12.49 14.4 6.79 18.33 14.32 11.51 7.63 13.23 10.45

Notice that this baseline’s recall directly depends on each language’s propor-
tion of sentences with VMWEs (see Figure 3). Recall is particularly high with
most languages scoring around the 40-point mark. We interpret this result as
indicating that Token-based scores tend to overestimate systems’ performance.
We elaborate on this issue in §4. The recall values in Hungarian and Turkish are
considerably lower than in the rest of the languages. This is because there is a
large proportion of VMWEs in these languages that are not tagged with a verb
POS tag (this baseline exploits that tag): 74% of VMWEs in Hungarian and 50%
of VMWE:s in Turkish do not have a single token with a verb POS tag. Different
teams make different decisions as to what MWEs constitute verbal MWEs. For
example, the Hungarian team informed us that they flag nominalised verbs as
VMWEs, even if they are not functioning as verbs anymore.

Given that the verb baseline only labels a single word (a verb) and that VMWEs
are made up of at least two words (the verb plus at least another word), the reader
might find it puzzling that, in Table 1, the verb baseline (BV) has non-zero MWE-
based scores on a few languages. The MWE-based evaluation modality only re-
wards full MWE matches, not partial matches. How is it possible to get non-zero
scores on full MWE matches for single-word labels which surely will never form
a full match, given that the minimum length of a full VMWE is two words? It
turns out that there are VMWEs of one-word length in some languages. This
is usually due to linguistic reasons specific to each language in which a single
word is consdered composed of more than one unit. In Spanish, for example, re-
flexives can sometimes appear separated from the verb and sometimes postfixed
to the verb: ella se levanta temprano ‘she gets up early’ vs. es dificil levantarse
temprano ‘getting up early is hard’. Both, se levanta and levantarse, are considered
to be VMWEs.
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4 Evaluation methods

As previously mentioned, system performance was measured on two modali-
ties: MWE-based evaluation and Token-based evaluation. Whilst the MWE-based
evaluation is an all-or-nothing measure, which might unfairly penalise systems
that partially identify correct VMWEs, the Token-based evaluation is intended
to compensate for this coarse penalisation by giving partial credit for every word
of the identified VMWE. Thus, it is reasonable to expect systems to perform bet-
ter on Token-based evaluation than on MWE-based evaluation. Indeed, Table 1
shows that for the most part, Token-based scores are higher than MWE-based
scores within every system-language combination, including baseline systems.

By definition, every single VMWE will involve a verb. So, the verb baseline sys-
tem is able to make gains on the Token-based F1 score by increasing recall, at the
expense of reducing precision. However, if the dataset were less unbalanced (i.e.
if it had less VMWE sparsity), the verb baseline would also increase its precision.
In addition, the Token-based evaluation gives more weight to longer VMWEs
than shorter ones. Matching one VMWE of say four tokens gets the same credit
as matching two VMWEs of two tokens each. More credit should perhaps be
given for matching more (even if partially) VMWESs than for matching fewer,
longer VMWEs.

Even though Token-based scores are expected to be higher than MWE-based
scores, the system rankings differ across modalities. Because of these issues, we
cannot categorically say that system A, which scored higher than system B in
Token-based evaluation, is better at detecting partial VMWEs. It could well be
that system A is good at identifying simple verbs and/or long and formulaic
VMWE:s but not necessarily at detecting partial VMWESs. One solution would be
giving a fraction of a point corresponding to the proportion of a matched VMWE,
as well as subtracting a fraction of a point proportional to matched non-VMWE
tokens.

On a slightly different note, we would like to propose an alternative evaluation
metric: Cohen’s x measure, which is commonly used to measure inter-annotator
agreement. We use it here to measure the degree to which systems agree with
gold standards. The obtained x score is similar to the MWE-based F1 score, but
with a correction that removes the possible bias from chance agreement.

We compare the similarity between systems’ rankings given by the averaged
results per language per performance measure, by reporting their Spearman’s
rank correlation p and Pearson’s moment correlation. As shown in Table 4, the
rankings and assigned scores to systems remain very similar across performance
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measures. However, overall, the Token-based and MWE-based measures show
the highest correlation (both in terms of ranking, p, and the relative magnitude of
the assigned scores, r). With respect to Cohen’s «, while it yields a ranking more
similar to the MWE-based measure, the distribution of the assigned Cohen’s «
scores are more similar to the token-based method (i.e., their linear relationship
signified by r).

Table 4: Similarity of systems’ ranking per performance measure:

Spearman’s p and Pearson’s r are reported to show similarity between
systems’ ranking per performance measure.

Measure Measure p r

Token-based MWE-based 98.14 97.48
Token-based  Cohen’skx  94.06 93.28
MWE-based Cohen’s « 96.75 97.18

4.1 On Using the Cohen’s k as an evaluation score

The use of the F1 score, i.e., the harmonic mean of precision and recall, for evalua-
tion can be biased unless certain criteria are met, e.g. that the distribution of anno-
tated instances in the test and training data are identical. Since in the PARSEME
shared task, the VMWE identification task is reduced to a binary classification
problem, Cohen’s k can be used reliably to obtain a measure of performance that
can, at least, cancel out the influence of certain sources of bias. In particular, it
penalises the overall score of the systems by the expected chance agreement (as
done in the computation of inter-annotator agreement) and takes into account
a notion of true negative rate in the overall evaluation of systems (Powers 2012;
2015).

The count of true negative outputs and subsequently true negative rate, how-
ever, cannot be computed directly from the evaluation setup and the test set. Sim-
ply put, we do not know how many “is thisa VMWE?” questions are answered by
a system® (or human annotators) in order to perform the identification task on a
test set (or to manually annotate a corpus). Hence, further assumptions about the
problem setting are required to devise the number of true negatives in the respec-
tive evaluation contingency table. Here, likewise (Savary et al. 2017), we assume

%This discussion also implies a way to justify the better performance of transition-based systems,
i.e., the total number of classification problems in these systems is often less than in non-
transition-based systems.
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that the total number of stimuli, i.e., the total number of “is this a VMWE?” ques-
tions to complete a VMWE identification problem, is approximately equivalent
to the number of verbs in the test set (or the corpus which must be annotated).

Given the abovementioned assumption for a test set, let v be the number of
verbs in the set that are not part of a VMWE. For a system, we define tp and fp
as being the number of correctly and incorrectly identified VMWEs, respectively,
and fn as the number of VMWE:s in the test set that are not identified by the
system. If

(2)
t=tp+ fp+fn+v

we compute

(3)
tp+v
Po = R
Pe=Po+P1
in which
(4)
(tp+ fp) x (tp + fn)
Po = tz
(fn+v)x(fp+v)
p1= t2
Finally, we compute Cohen’s k:
®)
_ 1-p,
1-pe

and report it as an additional performance measure. Evidently, the suggested
method can be refined and improved, e.g., by taking the partial matches between
VMWE:s (particularly the verbal part) into account.

5 Conclusions

This chapter analysed different statistical properties of the language corpora used
in the PARSEME shared task. We found that having large training sets allows

171



Alfredo Maldonado & Behrang QasemiZadeh

systems to better learn to identify VMWEs. But size is not the whole story. High
VMWE sparsity can hinder a system’s performance. However, it can be offset by
a large training corpus and, even better, by ensuring that the corpus has many
examples of a majority of VMWEs, a property we call gopod VMWE frequency
distribution. Romanian seems to be the language corpus that hits the sweet spot:
it is large in size (training and test portions) and it has a good frequency distri-
bution, even if it suffers from high VMWE sparsity.

This chapter also showed that the higher the proportion of VMWEs shared
between training and test sets, the better the systems will perform. We also saw
that it is advisable to design systems capable of detecting discontinuous VMWE:s,
but we observed that systems would not be significantly penalised for ignoring
embedded VMWEs. There was no clear pattern on the effect of the training-to-
test proportions on systems’ performance. Shuffling corpora before splitting into
training and test portions will also reduce its heterogeneity ratio and help put all
languages on a similar footing.

On the evaluation front, we found the token-based evaluation method to over-
estimate the performance of systems. As future work, the authors will investi-
gate alternative partial-matching measures, especially those that favour number
of the detected VMWESs over their lengths. And finally, this chapter described
the use of Cohen’s k metric to produce less biased estimations of systems’ per-
formance.

We would also like to recommend shared task organisers to consider applica-
tion scenarios of the VMWE identification task. Different application scenarios
will dictate different evaluation criteria, corpus selection and priorities. For ex-
ample, if VMWESs are being identified to compile a dictionary, perhaps recall
should be favoured over precision. If the application is to identify a few but
good VMWESs examples for a language learning system, then precision should
be favoured. Evaluation could also be done in vivo in actual parsing or machine
translation systems, which is something the authors will seek to investigate as
future work.

The quality of the analysis presented here depends directly on the quality of
the annotated data. Whilst the annotation guidelines try to be as universal as pos-
sible, we have found that significant differences in annotation approach remain.
For example, at least one language team annotated MWEs derived from verbs
that do not function as verbs (e.g., nominalised verbs). So we hope that this work
can spark a discussion in the community as to what constitutes a VMWE more
precisely. Is it simply a MWE that involves a word of verbal origin (even if it does
not function as a verb anymore) or must it be a MWE involving a verb that still
functions as a verb?

172



5 Analysis and Insights from the PARSEME Shared Task dataset

The authors hope that the insights and recommendations included in this chap-
ter inform future editions of the shared task. At the same time, the authors plan,
as future work, to repeat the analysis presented here on the second edition of
this dataset, which is being prepared at the time of writing. This will help us
determine to what extent our observations generalise to new datasets.
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Abbreviations
AVG average
BD baseline: dictionary lookup
BV baseline: verb detection
CRF conditional random fields
F1 F1 score aka F-measure
K Cohen’s inter-annotation agreement measure
MWE  multiword expression
POS part of speech
r Pearson’s correlation coefficient
p Spearman’s rank correlation coefficient
RNK rank
TRN training
TST test

VMWE verbal multiword expression

References

Al Saied, Hazem, Marie Candito & Matthieu Constant. 2018. A transition-
based verbal multiword expression analyzer. In Stella Markantonatou, Car-
los Ramisch, Agata Savary & Veronika Vincze (eds.), Multiword expressions

173



Alfredo Maldonado & Behrang QasemiZadeh

at length and in depth: Extended papers from the MWE 2017 workshop, 209-226.
Berlin: Language Science Press.

Al Saied, Hazem, Matthieu Constant & Marie Candito. 2017. The ATILF-LLF sys-
tem for parseme shared task: A transition-based verbal multiword expression
tagger. In Proceedings of the 13th Workshop on Multiword Expressions (MWE ’17),
127-132. Association for Computational Linguistics.

Boros, Tiberiu, Sonia Pipa, Verginica Barbu Mititelu & Dan Tufis. 2017. A data-
driven approach to verbal multiword expression detection. PARSEME shared
task system description paper. In Proceedings of the 13th Workshop on Multi-
word Expressions (MWE °17), 121-126. Association for Computational Linguis-
tics.

Kilgarriff, Adam & Tony Rose. 1998. Measures for corpus similarity and homo-
geneity. In Proceedings of the 3rd Conference on Empirical Methods in Natural
Language Processing, 46—52.

Klyueva, Natalia, Antoine Doucet & Milan Straka. 2017. Neural networks for
multi-word expression detection. In Proceedings of the 13th Workshop on Multi-
word Expressions (MWE ’17), 60-65. Association for Computational Linguistics.
April 4, 2017.

Maldonado, Alfredo, Lifeng Han, Erwan Moreau, Ashjan Alsulaimani, Koel Dutta
Chowdhury, Carl Vogel & Qun Liu. 2017. Detection of verbal multi-word ex-
pressions via conditional random fields with syntactic dependency features
and semantic re-ranking. In Proceedings of the 13th Workshop on Multiword
Expressions (MWE °17), 114-120. Association for Computational Linguistics.

Manning, Christopher D. & Hinrich Schiitze. 1999. Foundations of statistical nat-
ural language processing. Cambridge, MA: MIT Press.

Moreau, Erwan, Ashjan Alsulaimani, Alfredo Maldonado, Lifeng Han, Carl Vo-
gel & Koel Dutta Chowdhury. 2018. Semantic reranking of CRF label sequences
for verbal multiword expression identification. In Stella Markantonatou, Car-
los Ramisch, Agata Savary & Veronika Vincze (eds.), Multiword expressions at
length and in depth: Extended papers from the MWE 2017 workshop, 177-207.
Berlin: Language Science Press.

Nerima, Luka, Vasiliki Foufi & Eric Wehrli. 2017. Parsing and MWE detection:
Fips at the PARSEME shared task. In Proceedings of The 13th Workshop on Multi-
word Expressions (MWE ’17), 54-59. Association for Computational Linguistics.

174


http://dx.doi.org/10.5281/zenodo.1469561
http://dx.doi.org/10.18653/v1/W17-1717
http://dx.doi.org/10.18653/v1/W17-1717
http://dx.doi.org/10.18653/v1/W17-1716
http://dx.doi.org/10.18653/v1/W17-1707
http://dx.doi.org/10.18653/v1/W17-1715
http://dx.doi.org/10.5281/zenodo.1469559
http://dx.doi.org/10.18653/v1/W17-1706

5 Analysis and Insights from the PARSEME Shared Task dataset

Powers, David M. W. 2012. The problem with Kappa. In Proceedings of the 13th
Conference of the European Chapter of the Association for Computational Lin-
guistics (EACL ’12), 345-355. Avignon, France: Association for Computational
Linguistics. http://dl.acm.org/citation.cfm?id=2380816.2380859.

Powers, David M. W. 2015. What the f-measure doesn’t measure: Features, flaws,
fallacies and fixes. CoRR abs/1503.06410. http://arxiv.org/abs/1503.06410.

Sag, Ivan A., Timothy Baldwin, Francis Bond, Ann A. Copestake & Dan Flickinger.
2002. Multiword expressions: A pain in the neck for NLP. In Proceedings of the
3rd International Conference on Computational Linguistics and Intelligent Text
Processing, vol. 2276/2010 (CICLing ’02), 1-15. Springer-Verlag.

Savary, Agata, Marie Candito, Verginica Barbu Mititelu, Eduard Bejcek, Fabienne
Cap, Slavomir Cépld, Silvio Ricardo Cordeiro, Giilsen Eryigit, Voula Giouli,
Maarten van Gompel, Yaakov HaCohen-Kerner, Jolanta Kovalevskaité, Simon
Krek, Chaya Liebeskind, Johanna Monti, Carla Parra Escartin, Lonneke van der
Plas, Behrang QasemiZadeh, Carlos Ramisch, Federico Sangati, Ivelina Stoy-
anova & Veronika Vincze. 2018. PARSEME multilingual corpus of verbal mul-
tiword expressions. In Stella Markantonatou, Carlos Ramisch, Agata Savary &
Veronika Vincze (eds.), Multiword expressions at length and in depth: Extended
papers from the MWE 2017 workshop, 87-147. Berlin: Language Science Press.

Savary, Agata, Carlos Ramisch, Silvio Cordeiro, Federico Sangati, Veronika
Vincze, Behrang QasemiZadeh, Marie Candito, Fabienne Cap, Voula Giouli,
Ivelina Stoyanova & Antoine Doucet. 2017. The PARSEME Shared Task on auto-
matic identification of verbal multiword expressions. In Proceedings of the 13th
Workshop on Multiword Expressions (MWE ’17), 31-47. Association for Compu-
tational Linguistics.

Simko, Katalin Ilona, Viktéria Kovacs & Veronika Vincze. 2017. USzeged: Identi-
fying verbal multiword expressions with POS tagging and parsing techniques.
In Proceedings of The 13th Workshop on Multiword Expressions (MWE °17), 48—
53. Association for Computational Linguistics.

Simkod, Katalin Ilona, Viktéria Kovacs & Veronika Vincze. 2018. Identify-
ing verbal multiword expressions with POS tagging and parsing tech-
niques. In Stella Markantonatou, Carlos Ramisch, Agata Savary & Veronika
Vincze (eds.), Multiword expressions at length and in depth: Extended pa-
pers from the MWE 2017 workshop, 227-243. Berlin: Language Science Press.

175


http://dl.acm.org/citation.cfm?id=2380816.2380859
http://arxiv.org/abs/1503.06410
http://dx.doi.org/10.5281/zenodo.1469555
http://dx.doi.org/10.18653/v1/W17-1704
http://dx.doi.org/10.5281/zenodo.1469563

Alfredo Maldonado & Behrang QasemiZadeh

Stefanowitsch, Anatol & Stefan Th. Gries. 2003. Collostructions: Investigating the
interaction of words and constructions. International Journal of Corpus Linguis-
tics 8(2). 209-243.

176


http://dx.doi.org/10.1075/ijcl.8.2.03ste

