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We present a simple and efficient sequence tagger capable of identifying contin-
uous multiword expressions (MWEs) of several categories in French texts. It is
based on conditional random fields (CRF), using as features local context informa-
tion such as previous and next word lemmas and parts of speech. We show that
this approach can obtain results that, in some cases, approach more sophisticated
parser-based MWE identification methods without requiring syntactic trees from
a treebank. Moreover, we study how well the CRF can take into account external
information coming from both high-quality hand-crafted lexicons and MWE lists
automatically obtained from large monolingual corpora. Results indicate that ex-
ternal information systematically helps improving the tagger’s performance, com-
pensating for the limited amount of training data.

1 Introduction

Identifying multiword expressions (MWEs) in running texts with the help of lex-
icons could be considered as a trivial search-and-replace operation. In theory,
one could simply scan the text once and mark (e.g. join with an underscore)
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all sequences of tokens that appear as headwords in the MWE lexicons. Direct
matching and projection of lexical entries onto the corpus can be employed as
a simple yet effective preprocessing step prior to dependency parsing (Nivre &
Nilsson 2004) and machine translation (Carpuat & Diab 2010). Upon recognition,
the identified member words of an MWE can be concatenated and treated as
single token, that is, a “word with spaces”, as suggested by Sag et al. (2002).

However, this simple pipeline will fail when dealing with frequent categories
of MWEs that present some challenging characteristics such as variability and
ambiguity. For many MWE categories, variability due to morphological inflec-
tion may pose problems. For instance, if a lexicon contains the idiom to make
a face, string matching will fail to identify it in children are always making
faces because the verb and the noun are inflected.1 Since lexicons usually con-
tain canonical (lemmatised) forms, matching must take inflection into account.
This can be carried out by (a) pre-analysing the text and matching lemmas in-
stead of surface-level word forms (Finlayson & Kulkarni 2011), or by (b) looking
up lexicons containing inflected MWEs (Silberztein et al. 2012).

Things get more complicated when the target MWEs are ambiguous, though.
An MWE is ambiguous when its member words can co-occur without forming
an expression. For instance, to make a face is an idiom meaning ‘to show a funny
facial expression’, but it can also be used literally when someone is making a
snowman (Fazly et al. 2009). Additionally, the words in this expression can co-
occur by chance, not forming a phrase (Boukobza & Rappoport 2009; Shigeto
et al. 2013). This is particularly common for multiword function words such as
prepositions (e.g. up to), conjunctions (e.g. now that) and adverbials (e.g. at all).
For example, up to is an MWE in they accepted up to 100 candidates but not in
you should look it up to avoid making a typo. Similarly, at all is an adverbial in
they accepted no candidates at all, but not in this train does not stop at all stations.
Context-dependent statistical methods (Fazly et al. 2009; Boukobza & Rappoport
2009) and syntax-based methods (Candito & Constant 2014; Nasr et al. 2015) are
usually employed to deal with semantic ambiguity and accidental co-occurrence,
respectively.

In addition to variability and ambiguity, an additional challenge stems from
the absence or limited coverage of high-quality hand-crafted lexical resources
containing MWEs for many languages. Therefore, it is not always possible to em-

1In addition, the determiner a is notmandatory. However, discontinuous expressions containing
optional intervening words are out of the scope of this work because our method is based on
sequence models and our corpora only contain continuous MWEs. An adaptation of sequence
models to discontinuous expressions has been proposed by Schneider, Danchik, et al. (2014).
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ploy purely symbolic look-up methods for MWE identification. Statistical meth-
ods are an interesting alternative, since one can learn generic models for MWE
identification based on corpora where MWEs have been manually annotated. If
enough evidence is provided and represented at the appropriate level of granular-
ity, the model can make generalizations based on commonly observed patterns.
It may then be able to identify MWE instances that have never occurred in an-
notated training data. However, annotated corpora often do not contain enough
training material for robust MWE identification. Complementary evidence can
be obtained with the help of unsupervised MWE discovery methods that create
MWE lists from raw corpora, which are then considered as if they were hand-
crafted lexicons. In short, the heterogeneous landscape in terms of available re-
sources (annotated corpora, hand-crafted lexicons) motivates the development
of statistical MWE identification models that can exploit external hand-crafted
and automatically constructed lexicons as a complementary information source
(Constant & Sigogne 2011; Schneider, Danchik, et al. 2014; Riedl & Biemann 2016).

We propose a simple, fast and generic sequence model for tagging continuous
MWEs based on conditional random fields (CRF). It cannot deal with discontin-
uous expressions, but is capable of modelling variable and highly ambiguous
expressions. Moreover, we propose a simple adaptation to integrate information
coming from external lexicons. Another advantage of our CRF is that we do not
need syntactic trees to train ourmodel, unlikemethods based on parsers (Le Roux
et al. 2014; Nasr et al. 2015; Constant & Nivre 2016). Moreover, for expressions
that are syntactically fixed, it is natural to ask ourself if we really need a parser
for this task. Parsers are good for non-continuous MWEs, but we hypothesise
that continuous expressions can be modelled by sequence models that take am-
biguity into account, such as CRFs. Regardless of the syntactic nature of these
ambiguities, we expect that the highly lexicalised model of the CRF compensates
for its lack of structure.

The present chapter contains three significant extensions with respect to our
previous publication at the MWE 2017 workshop (Scholivet & Ramisch 2017).
First, we train and test our models on two complementary datasets containing
nominal expressions and general MWEs in French. Second, we study the inte-
gration of automatically constructed MWE lexicons obtained with the help of
MWE discovery techniques. Third, we study the performance of our system on
particularly hard MWE instances such as those including variants and those that
do not occur in the training corpora.

In short, we demonstrate that, in addition to being well suited to identifying
highly ambiguous MWEs in French (Scholivet & Ramisch 2017), the proposed
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model and its corresponding free implementation2 can also be applied to iden-
tify other MWE categories and use other types of external lexicons. We believe
that this approach can be useful (a) when no treebank is available to perform
parsing-basedMWE identification, (b) when largemonolingual corpora are avail-
able instead of hand-crafted lexical resources, and (c) as a preprocessing step to
parsing, which can improve parsing quality by reducing attachment ambiguities
(Candito & Constant 2014; Nivre & Nilsson 2004).

2 Related work

Token identification of MWEs in running text can be modelled as a machine
learning problem, building an identification model from MWE-annotated cor-
pora and treebanks. To date, it has been carried out using mainly two types of
models: sequence taggers and parsers. Sequence taggers such as CRFs, structured
support vector machines and structured perceptron allow disambiguatingMWEs
using local feature sets such as word affixes and surrounding word and POS 𝑛-
grams. Parsers, on the other hand, can take into account longer-distance relations
and features when building a parse tree, at the expense of using more complex
models.

Sequence taggers have been proven useful in identifying MWEs. MWE iden-
tification is sometimes integrated with POS tagging in the form of special tags.
Experiments have shown the feasibility of sequence tagging for general expres-
sions and named entities in English (Vincze et al. 2011), verb-noun idioms in
English (Diab & Bhutada 2009) and general expressions in French (Constant &
Sigogne 2011) and in English (Schneider, Danchik, et al. 2014; Riedl & Biemann
2016). Shigeto et al. (2013) tackle specifically English function words and build
a CRF from the Penn Treebank, additionally correcting incoherent annotations.
We develop a similar system for French, using theMWE annotation of the French
Treebank as training data and evaluating the model on a dedicated dataset.

Parsing-based MWE identification requires a treebank annotated with MWEs.
Lexicalised constituency parsers model MWEs as special non-terminal nodes in-
cluded in regular rules (Green et al. 2013). In dependency parsers, it is possible to
employ a similar approach, using special dependency labels to identify relations
between words that make up an expression (Candito & Constant 2014).

The work of Nasr et al. (2015) is a parsing-based approach evaluated on highly
ambiguous grammatical MWEs in French (§5.1). In their work, they link word

2The CRF-MWE tagger described in this chapter is included in the mwetoolkit in the form of 2
scripts: train_crf.py and annotate_crf.py, freely available at http://mwetoolkit.sf.net/
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sequences belonging to complex conjunctions such as bien que ‘well that’⇒ ‘al-
though’ and partitive determiner such as de la ‘of the’ ⇒ ‘some’, using a special
dependency link called morph, similar to Universal Dependencies’ compound re-
lation (Nivre et al. 2016). On the other hand, these word sequences can occur
by chance, such as in Je pense bien que je suis malade. ‘I think well that I am
sick.’ ⇒ ‘I really think that I am sick’. Then, the adverb well modifies the verb
think, which in turn has a complement introduced by that. Nasr et al. (2015) train
a second-order graph-based dependency parser to distinguish morph from other
syntactic relations, implicitly identifyingMWEs. In addition to standard features,
they extract features from a valence dictionary specifying whether a given verb
licences complements introduced by que ‘that’ or de ‘of’.

Our hypothesis is that parsing-based techniques like this are not required to
obtain good performances on continuous expressions. Our paper adapts a stan-
dard CRF model inspired on the ones proposed by Constant & Sigogne (2011),
Riedl & Biemann (2016) and Shigeto et al. (2013) to deal with continuous MWEs.

Concerning external lexical resources, Nasr et al. (2015) have shown that their
features extracted from a valence dictionary can significantly improve identifica-
tion. Moreover, most systems based on sequence taggers also integrate additional
hand-crafted lexicons to obtain good results (Constant & Sigogne 2011; Schnei-
der, Danchik, et al. 2014). Nonetheless, the integration of automatically discov-
ered lexicons of MWEs has not been explored by many authors, with the notable
exception of Riedl & Biemann (2016). We show that our CRF can naturally han-
dle automatically and manually constructed lexicons and that, in both cases, the
system benefits from the extra information present in the lexicons.

3 A CRF-based MWE tagger

Linear-chain conditional random fields (CRFs) are an instance of stochastic mod-
els that can be employed for sequence tagging (Lafferty et al. 2001). Each input
sequence 𝑇 is composed of 𝑡1… 𝑡𝑛 tokens considered as an observation. Each ob-
servation is tagged with a sequence 𝑌 = 𝑦1…𝑦𝑛 of tags corresponding to the
values of the hidden states that generated them. CRFs can be seen as a discrimi-
nant version of hidden Markov models, since they model the conditional proba-
bility 𝑃(𝑌 |𝑇 ). This makes them particularly appealing since it is straightforward
to add customised features to the model. In first-order linear-chain CRFs, the
probability of a given output tag 𝑦𝑖 for an input word 𝑥𝑖 depends on the tag of
the neighbour token 𝑦𝑖−1, and on a rich set of features of the input 𝜙(𝑇 ), that
can range over any position of the input sequence, including but not limited to
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the current token 𝑡𝑖 . CRF training consists in estimating individual parameters
proportional to 𝑝(𝑦𝑖 , 𝑦𝑖−1, 𝜙(𝑇 )).

The identification of continuous MWEs is a segmentation problem. We use a
tagger to perform this segmentation, employing the well-known Begin-Inside-
Outside (BIO) encoding (Ramshaw & Marcus 1995). In BIO, every token 𝑡𝑖 in the
training corpus is annotated with a corresponding tag 𝑦𝑖 with values B, I or O. If
the tag is B, it means the token is the beginning of an MWE. If it is I, this means
the token is inside an MWE. I tags can only be preceded by another I tag or by
a B. Finally, if the token’s tag is O, this means the token is outside the expression,
and does not belong to any MWE. An example of such encoding for the 2-word
expression de la ‘some’ in French is shown in Figure 1.

𝑖 -2 -1 0 1 2 3

w𝑖 Il jette de la nourriture périmée
𝑦𝑖 O O B I O O

He discards some food expired

Figure 1: Example of BIO tagging of a French sentence containing a
De+determiner expression, assuming that the current word (w0) is de.

For our experiments, we have trained a CRF tagger with the CRFSuite toolkit3

(Okazaki 2007). We used a modified version of the French treebank (Abeillé et al.
2003) as training, development, and test data, and the MORPH dataset4 (Nasr
et al. 2015) as development and test data. We additionally include features from
an external valence lexicon, DicoValence5 (van den Eynde & Mertens 2003), and
from an automatically constructed lexicon of nominal MWEs obtained automat-
ically from the frWaC corpus (Baroni & Bernardini 2006) with the help of the
mwetoolkit (Ramisch 2014).

3.1 CRF features

Our set of features 𝜙(𝑇 ) contains 37 different combinations of values (henceforth
referred to as the ALL feature set). Our features are inspired on those proposed by
Constant & Sigogne (2011), and are similar to those used by Schneider, Danchik,
et al. (2014) and Riedl & Biemann (2016). The feature templates described below

3http://www.chokkan.org/software/crfsuite/
4http://pageperso.lif.univ-mrs.fr/~carlos.ramisch/?page=downloads/morph
5http://bach.arts.kuleuven.be/dicovalence/
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10 Sequence models and lexical resources for MWE identification in French

consider that the current token t0 has surface form w0, lemma l0 and POS p0. In
addition to output tag bigrams (CRF’s first-order assumption), we consider the
following feature templates in our model, to be regarded in conjunction with the
current tag to predict:

• Single-token features (t𝑖):6

– w0 : wordform of the current token

– l0 : lemma of the current token

– p0 : POS tag of the current token

– w𝑖 , l𝑖 and p𝑖 : wordform, lemma or POS of previous (𝑖 ∈ {−1, −2}) or
next (𝑖 ∈ {+1, +2}) tokens

• 𝑁 -gram features (bigrams t𝑖−1t𝑖 and trigrams t𝑖−1t𝑖t𝑖+1):
– w𝑖−1w𝑖 , l𝑖−1l𝑖 , p𝑖−1p𝑖 : wordform, lemma and POS bigrams of previous-

current (𝑖 = 0) and current-next (𝑖 = 1) tokens
– w𝑖−1w𝑖w𝑖+1,l𝑖−1l𝑖l𝑖+1, p𝑖−1p𝑖p𝑖+1: wordform, lemma and POS trigrams

of previous-previous-current (𝑖 = −1), previous-current-next (𝑖 = 0)
and current-next-next (𝑖 = +1) tokens

• Orthographic features (orth):

– hyphen and digits: the current wordform w𝑖 contains a hyphen or
digits

– f-capital: the first letter of the current wordform w𝑖 is uppercase
– a-capital: all letters of the current wordform w𝑖 are uppercase

– b-capital: the first letter of the current word w𝑖 is uppercase, and it
is at the beginning of a sentence.

• Lexicon features (LF), described in more detail in §4.3:

– qeV: the current wordform w𝑖 is que, and the closest verb to the left
licences a complement introduced by que according to the valence
dictionary DicoValence.7

– deV: the current wordform w𝑖 is de, and the closest verb to the left
licences a complement introduced by de according to the valence dic-
tionary DicoValence.

6t𝑖 is a shortcut denoting the group of features w𝑖 , l𝑖 and p𝑖 for a token t𝑖 . In other words, each
token t𝑖 is a tuple (w𝑖 ,l𝑖 ,p𝑖). The same applies to 𝑛-grams.

7qeV and deV are sequential versions of the subcat features proposed by Nasr et al. (2015).
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– Association measures (AM) between the current token’s lemma l𝑖
and the previous tokens’ lemmas:

∗ mle: probability of the lemma sequence estimated using maxi-
mum likelihood estimation

∗ pmi: pointwise mutual information of the lemma sequence.

∗ dice: Dice’s coefficient of the lemma sequence

∗ t-meas: Student’s t-score of the lemma sequence

∗ ll: log-likelihood ratio between the current lemma and the pre-
vious lemma

Our proposed feature set is similar to previous work, with only minor differ-
ences (Constant & Sigogne 2011; Schneider, Onuffer, et al. 2014; Riedl & Biemann
2016). Like all previous models, we encode output tags with BIO, and we consider
as features the surface form of the current token, of surrounding tokens, and
bigrams of those. Our orthographic features are practically identical to related
work, but all previously proposed models include 4- to 5-character prefixes and
suffixes, which we do not. The features proposed by Constant & Sigogne (2011)
are only based on surface forms of words, given that their task is to jointly pre-
dict POS and MWE tags. On the other hand, the features of Schneider, Onuffer,
et al. (2014) and Riedl & Biemann (2016) are based on current and surrounding
lemmas and POS tags, and so are ours. Differently from these two articles, we
rely on token trigram features and we do not use mixed lemma+POS features.
The lemma-based features of Schneider, Onuffer, et al. (2014) are quite different
from ours, because they are conditioned on particular POS tags. The main differ-
ences between previous models and ours are in the lexicon features: Constant &
Sigogne (2011) and Schneider, Onuffer, et al. (2014) employ hand-crafted lexicons
and extract more detailed information from them than we do. Riedl & Biemann
(2016) cover both hand-crafted and automatically built lexicons. Their feature set
has one feature in common with ours: Student’s t-score. In short, the features
are similar in nature, but present some arbitrary variation in their implementa-
tions, in addition to some variation due to the nature of the available lexicons
and corpora.

Our training corpora contain syntactic dependency information. However, we
decided not to include it as CRF features for two main reasons. First, we wanted
to evaluate the hypothesis that sequence-based methods can performMWE iden-
tification without resorting to treebanks, as opposed to parser-based identifica-
tion. Second, representing syntactic structure in a CRF is tricky as the linear-
chain model in our experiments is not adequate for representing general graphs.
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Nonetheless, adding features based on simplified syntactic information (e.g. the
dependency label of each word with respect to its parent) is feasible and repre-
sents an interesting idea for future work.

4 Experimental setup

In order to evaluate our systems, we test them on fourMWE categories in French:

• Adverb+que expressions (AQ): in French, adverbs (such as bien ‘well’) and
the subordinating conjunction que ‘that’ are frequently combined to build
complex conjunctions such as bien que ‘well that’ ⇒ ‘although’. This cat-
egory was chosen because (a) these expressions present little variability,8

and (b) they are highly ambiguous, since their components can co-occur
by chance, as in il sait bien que tu mens. ‘he knows well that you lie.’⇒ ‘he
really knows that you are lying’. Thus, we can focus on ambiguity as a
challenging problem to model.

• De+determiner expressions (DD): in French, partitive and plural determin-
ers are formed by the word de ‘of’ followed by a definite article, for in-
stance, il mange de la salade, du pain et des fruits. ‘he eats of the.SG.FEM
salad, of-the.SG.MASC bread and of-the.PL fruit.’ ⇒ ‘he is eating some
salad, bread and fruit’. Similarly to AQ, these constructions present little
variation9 and are ambiguous with preposition+article combinations such
as il parle de la salade (lit. he talks of the salad) ‘he talks about the salad’.
Their disambiguation is challenging because it relies on the argumental
structure of the verb governing the noun. Moreover, these are among the
most frequent tokens in a corpus of French (Nasr et al. 2015).

• Nominal expressions: at a first moment, we focus on the identification of
nominal expressions for two reasons. First, they present morphological
variability but are syntactically fixed, making CRFs particularly suitable
to model them. Second, we test the inclusion of automatically calculated
association measures as features in the identification model, and our lexi-
con of pre-calculated association measures contains only nominal MWEs.

• General MWEs: finally, we evaluate our model on a corpus containing sev-
eral categories of continuous MWEs. These include nominal expressions,

8The only variability that must be taken into account is that que is sometimes written as qu’
when the next word starts with a vowel.

9Except for contractions de+le=du and de+les=des
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complex conjunctions and determiners such as AQ and DD combinations,
fixed prepositional phrases, multiword named entities, some limited con-
tinuous verbal expressions such as avoir lieu (lit. have place) ‘take place’,
and so on. Our training and test corpora do not contain any labels distin-
guishing these MWE categories. Therefore the only category-based analy-
sis we perform relies on the POS tags of the component words (for nominal
MWEs).

In our experiments, we used two annotated corpora: the French treebank and
the MORPH dataset. Other corpora annotated with MWEs in French do exist
(Laporte et al. 2008; Savary et al. 2017). However, we chose to evaluate our model
on a dataset for which, at the time of writing this chapter, many studies on MWE
identification methods have been reported (the French treebank) and on an in-
house dataset focusing on ambiguous MWEs (MORPH). Hence, we can compare
our sequence model with state-of-the art results and verify whether they are
adequate to recognise ambiguous MWEs. Evaluation on other corpora is left for
future work.

4.1 The French treebank

We train and test our models on the MWE-annotated French treebank (FTB),
available in CONLL format and automatically transformed into the CRFsuite for-
mat. The FTB is traditionally split into three parts: train, dev and test. We train
our systems systematically on the training part of the FTB, that we adapted to
keep only the MWEs we are interested in. For the experiments where we consid-
ered general MWEs and nominal MWEs, we used the FTB version of the SPMRL
shared task (Seddah et al. 2013). The FTB dev and test corpora were employed
respectively for feature engineering and evaluation. For each word, the corpus
contains its wordform, lemma, POS (15 different coarse POS tags), and syntactic
dependencies (that were ignored).

In the original corpus, MWE information is represented as words with spaces.
For instance, bien_que appears as a single token with underscores when it is a
complex conjunction, whereas accidental co-occurrence is represented as two
separate tokens bien and que. We argue that using such gold tokenisation is un-
realistic, especially in the case of ambiguous MWEs. We thus systematically split
single-token MWEs and added an extra column containing MWE tags using BIO
encoding (§3). Even though this preprocessing might sound artificial, we believe
that it provides a more uniform treatment to ambiguous constructions, closer to
their raw-text form. This assumption is in line with the latest developments in
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the dependency parsing community, which has evolved from parser evaluation
on gold tokenisation (Buchholz & Marsi 2006) to evaluation on raw text (Zeman
et al. 2017).

TheMWE-BIO tags were generated using the following transformation heuris-
tics in the case of ambiguous AQ and DD MWEs:

• For AQ expressions:

1. We scan the corpus looking for the lemmas ainsi_que, alors_que, au-
tant_que, bien_que, encore_que, maintenant_que and tant_que.

2. We split them into two tokens and tag the adverb as B and que as I.

• For DD expressions:

1. We scan the corpus looking for the wordforms des, du, de_la and
de_l’. Due to French morphology, de is sometimes contracted with
the articles les (determinate plural) and le (determinate singular mas-
culine). Contractions are mandatory for both partitive and preposi-
tion+determiner uses. Therefore, we systematically separate these
pairs into two tokens.10

2. If a sequence was tagged as a determiner (D), we split the tokens and
tag de as B and the determiner as I.

3. Contractions (des, du) tagged as P+D (preposition+determiner) were
split in two tokens, both tagged as O.

• All other tokens are tagged as O, including all other categories of MWEs.

For the newly created tokens, we assign individual lemmas and POS tags. The
word de is systematically tagged as P (preposition), not distinguishing partitives
from prepositions at the POS level. The input to the CRF is a file containing one
word per line, BIO tags as targets, and FeatureName=value pairs including 𝑛-
grams of wordforms, lemmas and POS tags, as described in §3.1.

In the case of nominal MWEs, we applied the same procedure as for AQ pairs
to the MWEs matching certain sequences of POS tags11. We accept that tokens
can be separated by punctuation marks, as in the proper noun Bouches-du-Rhône.

10An alternative to this preprocessing would be to keep contractions untokenised, and to assign
a single B tag to those representing determiners. However, this would actually move the task
of MWE identification to the POS tagger, which would need to choose whether the token is a
determiner or a contracted preposition before MWE identification.

11The exact regular-expression pattern is: (A.N) | (N.(PONCT.)?(A |(P+D.(PONCT.)?N) |
(P.(PONCT.)?(D.)?(PONCT.)?N) | N)+).
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When the MWE starts with a noun (N), it can be followed by one or more adjec-
tives (A), nouns (N), or nouns preceded by prepositions (P) optionally including
determiners (D) between the preposition and the noun. The matched nominal
MWEs include combinations composed of:

• adjective noun: premier ministre ‘prime minister’;

• noun adjective: corps médical ‘medical community’;

• noun-noun: maison mère ‘parent company’;

• noun preposition noun: motion de censure ‘motion of censure’;

• noun preposition determiner noun: impôt sur le revenu ‘income tax’;

• noun preposition+determiner noun: ironie du sort ‘twist of fate’.

4.2 MORPH dataset

We used the MORPH dataset introduced by Nasr et al. (2015) as test and develop-
ment corpora for ambiguous AQ and DD expressions. It contains a set of 1,269
example sentences, each containing one of 7 ambiguous AQ constructions and 4
ambiguous DD constructions. To build this corpus, around 100 sentences for each
of the 11 target constructions were extracted from the frWaC corpus and manu-
ally annotated as to whether they contain a multiword function word (MORPH)
or accidental cooccurrence (OTHER). We have preprocessed the raw sentences
as follows:

1. We have automatically POS tagged and lemmatized all sentences using
an off-the-shelf POS tagger and lemmatizer independently trained on the
FTB.12 This information is given to the CRF as part of its features.

2. We have located the target construction in the sentence and added BIO tags
according to the annotation provided: target pairs annotated as MORPH
were tagged B + I, target pairs annotated as OTHER were tagged O.

3. For each target construction, we have taken the first 25 sentences as de-
velopment corpus (dev, 275 sentences) and the remaining sentences for
testing (test, 994 sentences).

12http://macaon.lif.univ-mrs.fr/
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4. We created four targeted datasets: dev𝐴𝑄 , dev𝐷𝐷 , full𝐴𝑄 and full𝐷𝐷 ,
where the different construction classes are separated, in order to perform
feature selection.

Table 1 summarises the corpora covered by our experiments in terms of num-
ber of tokens and MWEs. We trained all systems on the training portion of the
FTB with different tokenisation choices, depending on the target MWE.13 The
density of AQ and DD being too low in FTB-dev and FTB-test, we tune and eval-
uate ourmodel for AQ andDD constructions on theMORPHdataset. For nominal
and general MWEs, however, we use the FTB-dev and FTB-test portions.

Table 1: Number of tokens and MWEs in each corpus of our experi-
ments.

Corpus Portion Target MWEs #tokens #MWEs

FTB train AQ 285,909 216
FTB train DD 285,909 1,356
FTB train Nominal 443,115 6,413
FTB train General 443,115 23,522
FTB dev Nominal 38,820 686
FTB dev General 38,820 2,117
FTB test Nominal 75,217 1,019
FTB test General 75,217 4,041
MORPH full𝐴𝑄 AQ 11,839 730
MORPH full𝐷𝐷 DD 8,319 539

4.3 External lexicons

The verbal valence dictionary DicoValence specifies the allowed types of comple-
ments per verb sense in French. For each verb, we extract two binary flags:

• qeV: one of the senses of the verb has one object that can be introduced
by que.14

13FTB-train for AQ/DD and for nominal/general MWEs is the same corpus, but the number of
tokens differs because all MWEs other than AQ and DD were represented using words-with-
spaces in FTB-train for AQ/DD.

14In DicoValence, an object P1, P2 or P3 licenses a complementizer qpind
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• deV: one of the senses of the verb has a locative, temporal or prepositional
paradigm that can be introduced by de.15

We also use a lexicon containing nominal MWEs that were automatically ex-
tracted from the frWaC. They were obtained with the help of the mwetoolkit by
first extracting all lemma sequences that match the nominal MWE pattern de-
scribed above. Then, for each sequence, we calculate its number of occurrences
as well as the number of occurrences of its member words, which are then used
to calculate the association measures listed in §3.1.

When integrating this lexicon in the CRF as features, special treatment was
required for overlapping expressions. If a given token belonged to more than
one overlapping MWE, we considered the maximum value of the association
measures. Moreover, since CRFs cannot deal with real-valued features, we have
quantized each association score through a uniform distribution that assigned
an equal number of expressions to each bin.

4.4 Evaluation measures

For general and nominal MWEs, we analyse the performance on the FTB re-
ported by the evaluation script of PARSEME shared task (see Savary et al. 2018
[this volume]).16 The script provides us with two different scores: one based on
MWEs, and one based on MWE tokens. The MWE-based measure requires that
all tokens in the MWE be predicted by the system, whereas the token-based mea-
sure is calculated based on each token individually, so that partially correct pre-
dictions are taken into account. Each variant (MWE-based and token-based) is
reported in terms of precision, recall and F-measure. In this work, we will partic-
ularly focus on the F-measure.

For AQ and DD combinations, we evaluated on the MORPH dataset. We re-
port precision (𝑃 ), recall (𝑅) and F-measure (F1) of MWE tags. In other words,
instead of calculating micro-averaged scores over all BIO tags, we only look at
the proportion of correctly guessed B tags. Since all of our target expressions are
composed of exactly 2 contiguous words, we can use this simplified score be-
cause all B tags are necessarily followed by exactly one I tag. As a consequence,
the measured precision, recall and F-measure scores on B and I tags are identical.

15In DicoValence, the paradigm is PDL, PT or PP.
16http://multiword.sf.net/sharedtask2017
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5 Results

We present our results for different categories of MWEs, performing feature se-
lection on the dev datasets. §5.1 presents an evaluation of our approach on am-
biguous AQ and DD expressions. §5.2 evaluates the broader category of nominal
MWEs. §5.3 then extends the latter results to an evaluation of all MWEs. §5.4
compares the best results we obtained against the state of the art. Finally, §5.5
presents the results of a detailed analysis focusing on variable and unseenMWEs.

5.1 Experiments on AQ and DD expressions

Our first evaluation was performed on the dev part of the MORPH dataset. We
consider a subset of around 1/4 sentences containing AQ constructions (dev𝐴𝑄 ,
175 sentences) and DD constructions (dev𝐷𝐷 , 100 sentences). We evaluate the
results under different levels of feature selection, regarding both coarse groups
and individual features.

In these experiments, the CRF is trained to predict BIO labels on the train-
ing part of the FTB, where only the target AQ and DD constructions have been
annotated as MWEs, as described in §4.1. Feature selection is performed on de-
velopment set of the MORPH dataset, in which each sentence contains exactly
one occurrence to disambiguate (MWE or accidental co-occurrence).

5.1.1 First feature selection: coarse

As shown in the first row of Table 2, when we include all features described in
§3 (ALL), we obtain an F1 score of 75.47 for AQ and 69.70 for DD constructions.
The following rows of the table show the results of a first ablation study, con-
ducted to identify coarse groups of features that are not discriminant and may
hurt performance.

When we ignore orthographic features (ALL - orth), all scores increase for
dev𝐴𝑄 and dev𝐷𝐷 , suggesting that MWE occurrences are not correlated with
orthographic characteristics. F1 also increases when we remove all surface-level
wordform features, including single words and 𝑛-grams (represented by W). We
hypothesize that lemmas and POS are more adequate, as they can reduce spar-
sity by conflating variations of the same lexeme, while wordforms only seem to
introduce noise.

We then evaluate the removal of lexicon features (ALL - LF). At a first in-
tuition, one would say that this information is important to our system, as it
allows assigning O tags to conjunctions and prepositions that introduce verbal
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Table 2: Ablation study results on the dev portion of the MORPH
dataset focusing on AQ and DD expressions - impact of the removal
of coarse-grained feature sets.

Feature set
dev𝐴𝑄 dev𝐷𝐷

P R F1 P R F1
ALL 89.55 65.22 75.47 92.00 56.10 69.70
ALL - orth 90.28 70.65 79.27 95.83 56.10 70.77
ALL - W 90.79 75.00 82.14 87.10 65.85 75.00
ALL - LF 91.18 67.39 77.50 88.89 58.54 70.59
ALL - t±2 87.67 69.57 77.58 88.00 53.66 66.67
ALL - t𝑖−1t𝑖t𝑖+1 87.84 70.65 78.31 91.67 53.66 67.69
ALL - t𝑖−1t𝑖 93.55 63.04 75.32 95.83 56.10 70.77
ALL - t𝑖−1t𝑖 - t𝑖−1t𝑖t𝑖+1 88.57 67.39 76.54 96.00 58.54 72.73
ALL - orth - W 90.24 80.43 85.06 87.10 65.85 75.00
ALL - orth - W - t±2 (REF1) 89.74 76.09 82.35 85.29 70.73 77.33

complements. Surprisingly, though, the system performs better without them.
We presume that this is a consequence of the sparsity of these features: since
there are many features overall in the system, the CRF will naturally forgo LF
features when they are present, rendering them superfluous to the system.These
features will be analyzed individually later (see Table 4).

One might expect that single tokens located 2 words apart from the target to-
ken do not provide much useful information, so we evaluate the removal of the
corresponding features (ALL - t±2). While this intuition may be true for dev𝐴𝑄 , it
does not hold for dev𝐷𝐷 . Next, we try to remove all trigrams, and then all trigam
& bigram features at once. When we remove trigrams, F1 decreases by 2.01 ab-
solute points in dev𝐷𝐷 and increases by 2.84 absolute points in dev𝐴𝑄 . Bigrams
are somehow included in trigrams, and their removal has little impact on the
tagger’s performance. When we remove bigram and trigram features altogether,
scores are slightly better, even though a large amount of information is ignored.
Since these results are inconclusive, we perform a more fine-grained selection
considering specific 𝑛-grams in §5.1.2.

Finally, we try to remove several groups of features at the same time. When
we remove both orthographic and wordform features, F1 increases to 85.06 for
dev𝐴𝑄 and 75.00 for dev𝐷𝐷 . When we also remove tokens located far away
from the current one, performance increases for dev𝐷𝐷 , but not for dev𝐴𝑄 . Un-
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reported experiments have shown, however, that further feature selection also
yields better results for dev𝐴𝑄 when we ignore t±2 features. Therefore, our ref-
erence (REF1) for the fine-grained feature selections experiments will be this set
of features, corresponding to the last row of Table 2.

5.1.2 Second feature selection: fine

Table 3 presents the results from fine-grained feature selection. In the first row
of the table, we replicate the reference (REF1) feature set defined above. In the
second row, we try to remove the lexicon features (LF) once again. When they
were removed in previous experiments, shown in Table 2, we had a gain in perfor-
mance, suggesting that these features were superfluous. When we remove them
from REF1, however, the precision and recall observed for DEV𝐷𝐷 decrease by
about 10 points.That is, the removal of LF yields a performance dropwith respect
to a relatively good model (REF1), suggesting that these features are valuable af-
ter all. We hypothesise that LF can be better taken into account now that there
are less noisy features overall in the whole system.

Table 3: Ablation study results on the dev portion of the MORPH
dataset focusing on AQ and DD expressions - impact of the removal
of fine-grained feature sets.

Feature set
dev𝐴𝑄 dev𝐷𝐷

P R F1 P R F1
REF1 89.74 76.09 82.35 85.29 70.73 77.33
REF1 - LF 90.00 78.26 83.72 75.76 60.98 67.57
REF1 - t−1t0 90.54 72.83 80.72 85.29 70.73 77.33
REF1 - t0t+1 89.87 77.17 83.04 84.85 68.29 75.68
REF1 - t0t+1t+2 (BEST1) 87.36 82.61 84.92 83.78 75.61 79.49

The last three rows of the table presents the results from attempts at remov-
ing individual 𝑛-gram features that we expected to be redundant or not highly
informative. First, we consider the removal of two types of bigram features inde-
pendently (towards the left and towards the right of the target word). We remove
their wordforms, POS and lemmas.The results suggest that bigrams can bemildly
useful, as their removal causes the most scores to drop.

In the last row of the table, we present the results from removing all trigram
features of the form t0t+1t+2. As a result, we can see that performance increases
for both datasets. While trigram features could be potentially useful to recognise
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longer expressions, we assume that the number of all possible trigrams is actually
too large, making the feature values too sparse. In other words, a much larger
annotated corpus would be required for trigram features to be effective. This is
the best configuration obtained on the development datasets, and we will refer
to it as BEST1 in the next experiments.

Our last feature selection experiments consider the influence of lexicon fea-
tures (LF) individually, as shown in Table 4. We observe that deV is an important
feature, because when we remove it, F1 decreases by almost 7 absolute points on
the dev𝐷𝐷 set. The featureqeV, however, seems less important, and its absence
only slightly decreases the F1 score on the dev𝐴𝑄 set. This is in line with what
was observed by Nasr et al. (2015) for the whole dataset. In sum, these features
seem to help, but we would expect the system to benefit more from them with a
more sophisticated representation.

Table 4: Ablation study results on the dev portion of the MORPH
dataset focusing on AQ and DD expressions - impact of the removal
of lexicon features (LF).

Dataset Feature set P R F1

dev𝐴𝑄
BEST1 87.36 82.61 84.92
BEST1-qeV 91.25 79.35 84.88

dev𝐷𝐷
BEST1 83.78 75.61 79.49
BEST1-deV 77.78 68.29 72.73

The results obtained in this section focus on a limited number of very frequent
expressions. Since our evaluation focuses on a small sample of 11 such MWEs
only, it would be tempting to train one CRF model per target expression. How-
ever, there are a few more expressions with the same characteristics in French,
and many of them share similar syntactic behaviour (e.g. conjunctions formed
by an adverb and a relative conjunction). An approach with a dedicated model
per expression would miss such regular syntactic behaviour (e.g. the fact that the
surrounding POS are similar).

The experiments reported up to here show how it is possible to identify highly
ambiguous (and frequent) expressions with a CRF, but they are hard to gener-
alise to other MWE categories. Therefore, in the next sections, we evaluate our
model on broader MWE categories such as nominal MWEs and general continu-
ous MWEs (as defined in the FTB).

280



10 Sequence models and lexical resources for MWE identification in French

5.2 Experiments on nominal MWEs

We now focus on the identification of nominal MWEs in the FTB. As above, we
separate our experiments in coarse-grained and fine-grained feature selection. In
these experiments, the CRF was trained on the training part of the FTB where
only nominal MWEs were tagged as B-I and all other words and MWEs were
tagged asO.The feature selection experiments are performed on the development
set of the FTB, also transformed in the same way. For the comparison with the
state of the art, we report results for the test portion of FTB.

5.2.1 First feature selection: coarse

Table 5 presents the results obtained on FTB for different levels of feature selec-
tion. In the first row (ALL), we present the evaluation of all the features described
in §3, except deV and qeV (only relevant to the previous experiments). We ob-
tain a baseline with MWE-based F1 score of 71.57%, and token-based score F1
score of 73.85%.

Table 5: Ablation study results on FTB-dev focusing on nominal MWEs
- impact of the removal of coarse-grained feature sets.

Feature set
MWE-based Token-based

P R F1 P R F1
ALL 80.86 64.19 71.57 81.23 67.70 73.85
ALL - orth 81.85 64.78 72.32 82.16 68.02 74.43
ALL - W 80.41 64.78 71.75 80.95 68.44 74.17
ALL - AM 81.37 61.72 70.19 81.48 65.16 72.41
ALL - t±2 81.49 65.84 72.83 81.80 69.50 75.15
ALL - t+2 80.96 65.51 72.48 81.18 69.08 74.64
ALL - t𝑖−1t𝑖 80.41 64.31 71.47 80.99 67.84 73.83
ALL - t𝑖−1t𝑖t𝑖+1 (REF2) 81.61 65.84 72.88 82.05 69.40 75.20
ALL - t𝑖−1t𝑖t𝑖+1 - AM 81.69 63.60 71.52 82.09 67.28 73.95
ALL - orth - W - t±2 - t𝑖−1t𝑖t𝑖+1 79.59 63.37 70.56 81.00 67.88 73.86
ALL - orth - t𝑖−1t𝑖t𝑖+1 82.51 65.05 72.73 82.74 67.93 74.61

We consider the removal of the same groups of features that we removed
on the AQ and DD experiments. We evaluate the independent removal of or-
thographic features, wordforms, association measures, t±2, t𝑖+2, bigrams and tri-
grams. We notice that all of these columns have better results than ALL, except
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for the columnwhere we removed the bigrams and the one in which we removed
association measures. In particular, we notice that the absence of the AMs signif-
icantly hurts recall, which in turn has an impact on the F1 score (−1.38% for the
MWE-based measure and −1.41% for the token-based measure). This is the first
clue that indicates the importance of these features.

We then evaluate the removal of different groups of features at the same time.
We begin by deleting all of the previous groups, except for AMs and bigrams,
which seemed to provide useful information above. Nevertheless, we did not ob-
tain better results. We then tried to remove only the trigrams and the ortho-
graphic features. Results were slightly higher than ALL, but still remain worse
than the results with only the trigrams removed. Finally, we decided to verify if
the AM features are still relevant to obtain this performance.This was confirmed,
as without the AM, the MWE-based F1 score decreased by 1.36%, and the token-
based F1 score decreased by 1.25%. Overall, the highest results were obtained by
removing only trigrams from ALL, and so we take this feature set as our new
reference (REF2).

5.2.2 Second feature selection: fine

Experiments above have shown that association measures (AM) are a vital com-
ponent of our system. We proceed now to evaluate the importance of individual
association measures towards the identification of nominal MWEs. The results
are shown in Table 6.We consider the impact of the different AMs in two baseline
configurations: all features (ALL), and the features of the reference only (REF2).
We then remove individual measures and evaluate the new feature set on FTB-
dev.

We consider the removal of multiple combinations of features. In most cases,
we notice a slight improvement in the results against ALL, but not when com-
pared to the reference group . The removal of the dice measure did improve the
results in both cases, ALL and REF2. Therefore, this configuration was chosen as
the BEST2 set of features. We then evaluated these BEST2 features on the FTB-
test dataset, obtaining a MWE-based F1 score of 71.38%, and a token-based score
of 73.43%. As a sanity check, we have also evaluated the system without AMs on
FTB-test (ALL - AM). The BEST2 system is significantly different from both ALL
and ALL - AM on the test set. Moreover, the large margin between ALL - AM
and the two other systems indicates that association measures do provide useful
features for this task.
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Table 6: Ablation study results on FTB-dev focusing on nominal MWEs
- impact of the removal of fine-grained feature sets.

Feature set
MWE-based Token-based

P R F1 P R F1
ALL 80.86 64.19 71.57 81.23 67.70 73.85
ALL - dice 81.07 64.55 71.87 81.39 68.02 74.11
ALL - t-meas 81.07 64.55 71.87 81.40 68.07 74.14
ALL - pmi 81.26 63.84 71.50 81.51 67.33 73.74
ALL - mle - ll 81.13 64.31 71.75 81.40 67.65 73.89
ALL - t-meas - dice 80.76 64.78 71.90 81.23 68.30 74.20
ALL - mle - ll - t-meas - dice 81.72 63.72 71.61 81.58 67.05 73.61
REF2 81.61 65.84 72.88 82.05 69.40 75.20
REF2 - dice (BEST2) 81.84 65.84 72.98 82.33 69.45 75.34
REF2 - t-meas 81.61 65.84 72.88 82.01 69.22 75.08
REF2 - pmi 81.80 65.14 72.52 82.36 68.71 74.92
REF2 - mle - ll 81.67 65.61 72.76 82.03 69.08 75.00
REF2 - t-meas - dice 81.75 65.96 73.01 82.18 69.36 75.23
REF2 - mle - ll - t-meas - dice 81.41 65.49 72.58 81.51 68.94 74.70

ALL (on FTB-test) 77.06 65.66 70.90 79.10 68.23 73.27
ALL - AM (on FTB-test) 76.96 61.81 68.56 78.94 64.91 71.24
BEST2 (on FTB-test) 76.00 67.28 71.38 77.74 69.58 73.43

5.3 Experiments on general MWEs

We extend the experiments above to evaluate the feature sets against the whole
FTB corpus, keeping all annotated MWEs in the training, development and test
parts of the FTB.Wewould like to verify if our system is able to take into account
the different MWE categories at the same time.This time, we only present coarse-
grained feature selection (Table 7), since unreported fine-grained feature selec-
tion resulted in similar findings as in experiments focusing on nominal MWEs.

The first row in the table (ALL) presents the evaluation of all features described
in §3. The prediction of general MWEs with ALL features yields a MWE-based
F1 score of 78.89% and a token-based F1 score of 81.61%. We then consider what
happens when one removes the same groups of features as in the previous sec-
tions.This time the results are quite different: all of these tests have worse results
than ALL, except when we remove t+2 features. In some unreported experiments,
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Table 7: Ablation study results on FTB-dev focusing on general MWEs
- impact of the removal of feature sets.

Feature set
MWE-based Token-based

P R F1 P R F1
ALL 85.60 73.16 78.89 87.32 76.60 81.61
ALL - orth 85.09 72.97 78.57 86.97 76.56 81.44
ALL - W 83.96 72.59 77.86 86.13 76.37 80.96
ALL - AM 85.11 72.78 78.46 86.89 76.33 81.27
ALL - t±2 84.03 72.45 77.81 86.57 76.94 81.47
ALL - t+2 85.50 73.68 79.15 87.19 77.21 81.90
ALL - t𝑖−1t𝑖 84.36 71.75 77.54 86.61 75.47 80.66
ALL - t𝑖−1t𝑖t𝑖+1 84.78 73.07 78.49 86.39 76.31 81.04
ALL - t+2 - orth (REF3) 85.52 73.82 79.24 87.30 77.35 82.03
REF3 - AM 85.37 72.69 78.52 87.08 76.33 81.35
REF3 - t-meas (BEST3) 85.62 73.87 79.31 87.40 77.43 82.11

ALL (on FTB-test) 83.80 74.51 78.88 86.58 78.23 82.19
ALL - AM (on FTB-test) 84.19 73.52 78.49 86.90 77.30 81.82
BEST3 (on FTB-test) 84.03 74.71 79.10 86.72 78.47 82.39

we have tried to remove other groups of features along with t+2. We found that
removing orthographic features along with t+2 increased the results more than
only removing t+2 features.This group of features will be our new reference from
now on (REF3). Once again, we tried to remove AMs from the reference to verify
their impact. Here again, we notice that the removal of these features decreases
the overall performance scores, even if their impact is weaker than it was in the
case of nominal MWEs. Unreported experiments have shown that we obtain bet-
ter results when we ignore the t-meas feature (BEST3).

Then, we applied the feature group BEST3 on the FTB-test dataset, and we ob-
tained a MWE-based F1 score of 79.10%, and a token-based score of 82.39%. For
the feature selection experiments on the test part of the FTB (both nominal and
general MWEs), we calculated the p-value of the difference between the config-
uration called BEST and the one called ALL, using approximate randomisation
with stratified shuffling. None of the observed differences was considered statis-
tically significant with 𝛼 = 0.05.

284



10 Sequence models and lexical resources for MWE identification in French

5.4 Comparison with state of the art

We now compare the highest-scoring reference results with the state of the art.
We begin by evaluating the identification of 𝐷𝐷 and 𝐴𝑄 constructions, and then
proceed to evaluate more generally the quality of our reference system for gen-
eral MWE identification. The comparisons presented here focus on MWE iden-
tification only, and our model takes gold POS and lemma information as input
(except on theMORPH dataset). On the other hand, some of theworksmentioned
in our comparisons also predict POS and/or syntactic structure, which makes the
task considerably harder. Therefore, results presented here should be taken as an
indication of our position within the current landscape of MWE identification,
rather than as a demonstration of our model’s superiority.

5.4.1 AQ and DD constructions

We report the performance of MWE identification on the full MORPH dataset,
split in two parts: sentences containingAQ constructions (full𝐴𝑄 ) and sentences
containing DD constructions (full𝐷𝐷). The use of the full datasets is not ideal,
given that we performed feature selection on part of these sentences, but it allows
a direct comparison with related work.

Table 8 presents a comparison between the best system score obtained after
feature selection (BEST1) and the results reported byNasr et al. (2015).We include
two versions of the latter system, since they also distinguish their results based
on the presence of lexicon features (LF) coming from DicoValence.

Table 8: Comparison with baseline and state of the art of AQ and DD
identification on the full MORPH dataset.

System
full𝐴𝑄 full𝐷𝐷

P R F1 P R F1
Baseline 56.08 100.00 71.86 34.55 100.00 51.35
Nasr et al. (2015)-LF 88.71 82.03 85.24 77.00 73.09 75.00
Nasr et al. (2015)+LF 91.57 81.79 86.41 86.70 82.74 84.67
BEST1 91.08 78.31 84.21 79.14 74.37 76.68
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We additionally report results for a simple baseline:

1. We extract a list of all pairs of contiguous AQ and DD from the FTB-train.
2. We calculate the proportion of cases in which they were annotated as

MWEs (B-I tags) with respect to all of their occurrences.
3. We keep in the list only those constructions which were annotated as

MWE at least 50% of the time.
4. We systematically annotate these constructions as MWEs (B-I) in all sen-

tences of the MORPH dataset, regardless of their context.

Table 8 shows that this baseline reaches 100% recall, covering all target con-
structions, but precision is very low, as contextual information is not taken into
account during identification. Our BEST1 system can identify the target ambigu-
ous MWEs much better than the baseline for both full𝐴𝑄 and full𝐷𝐷 .

For some constructions, we do obtain results that are close to those obtained
by the parsers (see Table 9 for more details). For full𝐴𝑄 , our BEST1 system
obtains an F1 score that is 1.2 absolute points lower than the best parser. For
full𝐷𝐷 , however, our best system, which includes lexicon features (LF), is com-
parable with a parser without lexicon features. When the parser has access to
the lexicon, it beats our system by a significant margin of 7.99 points, indicating
that the accurate disambiguation of DD constructions indeed requires syntax-
based methods rather than sequence taggers. These results contradict our hy-
pothesis that sequence models can deal with continuous constructions with a
performance equivalent to parsing-based approaches. While this may be true
for non-ambiguous expressions, parsing-based methods are superior for AQ and
DD constructions, given that they were trained on a full treebank, have access
to more sophisticated models of a sentence’s syntax, and handle long-distance
relations and grammatical information.

Despite the different results obtained depending on the nature of the target
constructions, the results are encouraging, as they prove the feasibility of ap-
plying sequence taggers for the identification of highly ambiguous MWEs. Our
method has mainly two advantages over parsing-basedMWE identification: (a) it
is fast and only requires a couple of minutes on a desktop computer to be trained;
and (b) it does not require the existence of a treebank annotated with MWEs.

Table 9 shows the detailed scores for each expression in the MORPH dataset.
We notice that some expressions seem to be particularly difficult to identify, es-
pecially if we look at precision, whereas for others we obtain scores well above
90%. When we compare our results to those reported by Nasr et al. (2015), we
can see that they are similar to ours: ainsi ‘likewise’, alors ‘then’ and bien ‘well’
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have F1 higher than 90%, while autant ‘as much’ and tant ‘while’ have a score
lower than 80%. The AQ constructions with encore ‘still’ and maintenant ‘now’
are the only ones which behave differently: our system is better for encore ‘still’,
but worse for maintenant ‘now’. Likewise, for DD expressions, our system ob-
tains a performance that is close to their system without lexicon features (LF),
but considerably worse than their system including LFs for three out of 4 ex-
pressions. Both approaches are more efficient in identifying the plural article de
les ‘of the.PL’ than the partitive constructions.

Table 9: Performance of the BEST1 configuration broken down by ex-
pression, along with the results for the best model of Nasr et al. (2015)
(with LF).

BEST1 system Nasr et al. (2015)
Expression P R F1 P R F1
ainsi que 94.44 93.15 93.79 95.94 89.87 92.81
alors que 84.00 97.67 90.32 93.81 93.81 93.81
autant que 93.48 51.81 66.67 86.66 70.65 77.84
bien que 100.00 91.43 95.52 91.66 99.18 90.41
encore que 76.19 94.12 84.21 92.85 65.00 76.47
maintenant que 97.62 64.06 77.36 90.91 74.62 81.96
tant que 100.00 60.00 75.00 82.35 70.00 75.67

de le 78.05 71.11 74.42 85.41 91.11 88.17
de la 67.74 72.41 70.00 81.25 89.65 85.24
de les 92.41 71.57 80.66 98.70 76.00 85.87
de l’ 61.11 95.65 74.58 64.51 86.95 74.07

5.4.2 General MWEs

We now compare our system with two baselines and with the system proposed
in Le Roux et al. (2014).17 Baseline1 consists in identifying as MWE every contin-
uous occurrence of tokens that has been seen as an MWE in the training corpus.
For example, the MWE bien sûr (lit. well sure) ‘of course’ can be seen in the train-
ing corpus, and so every occurrence of this expression was predicted as an MWE

17The comparison with Le Roux et al. (2014) is not ideal, since we predict MWEs with the help
of gold POS and lemmas, whereas they try to predict both POS and MWEs. However, we could
not find a fully comparable evaluation in the literature.
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for the test corpus. Baseline2 filters the list of MWEs seen in the training cor-
pus, so that only the expressions which had been annotated more than 40% of
the time are predicted as MWEs. For example, the expression d’un côté (lit. of a
side) ‘on the one hand’ is not predicted as MWE, as it was only annotated in 38%
of its occurrences in the training corpus. The baselines were directly inspired
by a predictive model applied to the English language in a similar task, where a
threshold of 40% was found to yield the best results (Cordeiro et al. 2016). The
applied threshold in Baseline2 only eliminates 6.46% of the MWEs from the list,
but it contributes to an increase of 20–30 points in precision without impacting
the recall.

Our system (BEST3 configuration) is more accurate than the baselines, both
in terms of precision and recall. It also has a higher precision than the approach
proposed by Le Roux et al. (2014), but the recall is considerably worse (9.48%
less than their system). This means that our system misses more expressions,
even if its predictions have higher precision. This could be partly explained by
the fact that they employed dictionaries, and have access to more expressions
that our system has never seen and could not predict. Nonetheless, our results
are sufficiently close and represent a decent alternative if high-quality external
resources are not available.

Table 10: Comparisonwith baseline and state of the art of generalMWE
identification on FTB-test.

System
MWE-based Token-based

P R F1 P R F1
Baseline1 52.93 66.20 58.82 62.70 69.73 66.03
Baseline2 82.76 69.36 75.47 84.80 69.62 76.46
BEST3 configuration 84.03 74.71 79.10 86.72 78.47 82.39
Le Roux et al. (2014) 80.76 84.19 82.44 — — —

5.5 Analysis of results

The performance of our CRF identification model depends on the characteristics
of the identified MWEs and of the training and test corpora. Therefore, we have
performed a detailed analysis of its performance focusing on a subset of the test
corpus. We focus on two phenomena: variants and unseen MWEs. We define a
variant as an MWE whose lemmatised form occurs both in the training and in
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the test corpus, but whose surface form in the test corpus is different from all of
its surface forms in the training corpus.We define an unseenMWE as one whose
lemmatised form occurs in the test corpus but never (under any surface form) in
the training corpus. MWEs which have identical occurrences in the training and
test corpora will be referred to as seen MWEs.

Both variants and unseenMWEs are harder to identify than seenMWEs. None-
theless, we hypothesise that our model is able to recognise variants correctly,
since its features are based on lemmas. On the other hand, we expect that unseen
MWEs cannot be easily predicted given that our system is absed on categorical
features and does not have access to much information about an expression that
has never been seen in the training corpus, except for its association measures in
a large unannotated corpus. To verify these hypotheses, we create sub-corpora
of FTB-test, where the density of variants and unseen MWEs is higher than in
the full FTB-test corpus. In these experiments, the model is not newly trained,
but the BEST2 and BEST3 models are applied to different sub-corpora with a high
density of variant/unseen MWEs.

The evaluation measures reported in our experiments (§4.4) consider the best
bijection between predicted and gold MWEs. Therefore, we cannot simply re-
move seen MWEs from the test set, since they will be predicted anyway, ar-
tificially penalising precision. Therefore, instead of completely removing seen
MWEs, we remove sentences that contain only seen MWEs and keep sentences
that contain (a) at least one variant MWE or (b) at least one unseen MWE.

Table 11: Results of BEST2 (nominalMWEs) and BEST3 (generalMWEs)
on FTB-test, on sub-corpus containing unseen variants of a seen
MWEs, and on sub-corpus containing unseen MWEs. Columns %var
and %unseen show the proportion of variants/unseen MWEs in each
sub-corpus.

Feature set
%var %unseen MWE-based Token-based

P R F1 P R F1
Nominal full 5% 28% 76.00 67.28 71.38 77.74 69.58 73.43
Nom. variants 65% N/A 86.42 63.64 73.30 85.84 66.20 74.75
Nom. unseen N/A 72% 82.01 42.70 56.16 87.78 46.75 61.01

General full 5% 23% 84.03 74.71 79.10 86.72 78.47 82.39
Gen. variants 32% N/A 88.91 69.44 77.98 92.77 74.05 82.36
Gen. unseen N/A 51% 86.94 65.22 74.25 90.40 69.14 78.35
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Table 11 presents the performance of the BEST2 configuration for nominal
MWEs (first row) and BEST3 configuration for general MWEs (fourth row) on the
full FTB-test corpus. For each expression (nominal and general), we also present
the results for the sub-corpus containing a higher density of variants and of un-
seen MWEs. The numbers in columns %var and %unseen indicate the proportion
of variant/unseen MWEs in each sub-corpus. Notice that, in the case of general
MWEs, these proportions are quite low (32% and 51%), indicating that sentences
containing variant and unseen general MWEs often contain seen ones too.When
focusing on variants (Nom. variants and Gen. variants sub-corpora), the propor-
tion of unseen MWEs is very small and not relevant (N/A), and vice-versa.

If we focus on variants, we can observe relatively stable results with respect
to the full FTB-test corpus. For nominal MWEs, precision increases by 8-10%,
whereas recall decreases by about 3% for both MWE-based and token-based mea-
sures. Results for general MWEs follow a similar pattern: around 4-6% improve-
ment in precision at the cost of around 4-5% decrease in recall. The precision of
general MWE identification in the variants sub-corpus is particularly impressive,
reaching 92.77%.

The variants sub-corpora contain less unseen MWEs than the full FTB-test
corpus, so the predicted MWEs are more reliable (better precision), showing that
our model is robust to morphological variability. On the other hand, the fact that
recall drops indicates that it is indeed slightly harder to recognise variants of
MWEs than those seen identically in training and test corpora. In short, we infer
that variants can be correctly handled and identified by our model, provided that
a good lemmatiser is available (results presented here are based on gold lemmas,
their substitution by predicted lemmas should be studied in the future).

On the other hand, predicting unseen MWEs is considerably harder. Recall
drops drastically by about 23-25% for nominal MWEs and by about 9% for general
MWEs, and the improvements in precision do not compensate for this, yielding
much lower F-measure values, specially for nominal MWEs where the concen-
tration of unseen MWEs in the sub-corpus is higher (72%). The improvements
in precision are probably due to the fact that some seen and variant MWEs are
still present in the sub-corpora. AMs could also have some predictive power to
identify unseen MWEs, and we intend to verify their contribution for unseen
MWE identification in the future. These results show that our model is limited
in the identification of unseen MWEs, and can probably only identify some of
those that appear in the AM lexicons.
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6 Conclusions and future work

We have described and evaluated a simple and fast CRF tagger that is able to
identify several categories of continuous multiword expressions in French. We
have reported feature selection studies and shown that, for AQ constructions and
for general MWEs, our results are almost as good as those obtained by parsers,
even though we do not rely on syntactic trees. This was not true for DD con-
structions, though, which seem to require parsing-based methods to be properly
analysed. Based on these results, we conclude that, when treebanks are not avail-
able, sequence models such as CRFs can obtain reasonably good results in the
identification of continuous MWEs. On the other hand, when MWE-annotated
treebanks exist, parsing-based models seem to obtain better results, especially
for expressions whose high ambiguity requires syntax to be resolved.

An interesting direction of research would be to study the interplay between
automatic POS tagging and MWE identification. We recall that our results were
obtained with an off-the-shelf POS tagger and lemmatizer. Potentially, perform-
ing both tasks jointly could help obtaining more precise results (Constant & Si-
gogne 2011). Moreover, we could explore CRFs’ ability to work with lattices in
order to pre-select the most plausible MWE identification (and POS tagging) so-
lutions, and then feed them into a parser which would take the final decision.

Another idea for future work would be an investigation of the features them-
selves. For example, in this work, we were not fully satisfied with the quality of
the representation of lexical features. We would like to investigate the reason
why lexical features were not always useful for the task of MWE identification,
which could be done by performing an error analysis on the current systems.
Another interesting question is whether annotated corpora are at all necessary:
could hand-crafted and/or automatically built lexicons be employed to identify
MWEs in context in a fully unsupervised way?

While these experiments shed some light on the nature ofMWEs in French, the
feature selection methodology is highly empirical and cannot be easily adapted
to other contexts.Therefore, wewould like to experiment different techniques for
generic automatic feature selection and classifier tuning (Ekbal & Saha 2012).This
could be performed on a small development set, and would ease the adaptation
of the tagger to other contexts.

Finally, we would like to experiment with other sequence tagging models such
as recurrent neural networks. In theory, suchmodels are very efficient to perform
feature selection and can also deal with continuous word representations able to
encode semantic information. Moreover, distributed word representations could
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be helpful in building cross-lingual MWE identification systems.
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