Chapter 2

Machine translation: Past, present and future

Daniel Stein
Universität Hamburg, Hamburger Zentrum für Sprachkorpora

The attempt to translate meaning from one language to another by formal means traces back to the philosophical schools of secret and universal languages as they were originated by Ramon Llull (13th c.) or Johann Joachim Becher (17th c.). Today, machine translation (mt) is known as the crowning discipline of natural language processing. Due to current mt approaches, the time needed to develop new systems with similar power to older ones has decreased enormously. In this article, the history of mt, the difference with computer aided translation, current approaches and future perspectives are discussed.

1 History of machine translation

Although the first systems of mt were built on the first computers in the years right after World War II, the history of mt does not begin, as often stated, in the 1940s, but some hundred years ago. In order to judge current developments in mt properly, it is important to understand its historical development.

1.1 Universal and secret languages

Most likely the first thoughts on mt emerged out of two philosophical schools that dealt with the nature of language and resulted in similar insights, although stemming from different directions. The first was directed at creating secret languages and codes in order to communicate in secrecy. The second evolved from the ideal of a universal language which would allow communication without borders in the times after Babylonian language confusion.
Noteworthy proponents of the movement of universal languages were the Catalan philosopher Ramon Llull (1243 to ca. 1316, often referred to by the latinized version of his name, Raimundus Lullus) and the German philosopher and mathematician Gottfried Wilhelm Leibnitz (1646–1716). Llull developed a theory of logic that allowed objectifying the reasoning on God and the world by means of a formal language. His ideas were later used by Leibnitz in his theory of monades (first use of this term in 1696), in which he tries to develop a set of the smallest units of meaning (“termini primi”) to compose all thinkable thoughts. Other attempts were started by a precise determination of the inventory of the world in the form of a taxonomy in order to find all sayable things (Gardt 1999).

In the long history of secret languages and hidden codes, the German physicist and alchemist Johann Joachim Becher developed a system in 1661 that is especially interesting in the context of MT, as it appears to be very similar to the first technical approaches in the late 1940s. It is called “Character pro notitia linguarum universal” and offers “Eine geheimschriftliche Erfindung, bisher unerhört, womit jeder beim Lesen in seiner eigenen Sprache verschiedene, ja sogar alle Sprachen, durch eintägiges Einarbeiten erklären und verstehen kann” (Becher 1962) (“A secret and currently unknown language invention that enables everyone to explain and understand different and even all languages after a one-day orientation by reading in their own language.”). The approach is based on dictionaries that are related to each other by number codes, which is more or less identical to what was then called “mechanical translation”. But despite the obvious relationship to Becher, the influence of the school of universal languages on MT was small. In contrast, with the development of the science of secret languages, cryptology continuously gained in importance.

In World War II, the decipherment of the German Enigma code was regarded as a crucial point. The British team around Alan Turing, located in Bletchley Park, was responsible for this urgent project and achieved the breaking of the code by means of statistical methods that were processed on computing machines. Without their knowledge, these scientists laid the foundations for practical MT.

Considering the experiences of Bletchley Park, the exchange of letters by Warren Weaver and Andrew Booth is regarded as the birth of MT. Weaver wrote:

[…] it is very tempting to say that a book written in Chinese is simply a book written in English which was coded into the ‘Chinese Code’. If we have useful methods for solving almost any cryptographic problem, may it not be that with proper interpretation we already have useful methods for translation? (Weaver 1955)
1.2 Evolution of MT

Although mathematical methods prove useful for cryptology, they turned out to be inadequate for more challenging and complex translation tasks. Accordingly, the systems that were subsequently developed were based on dictionaries and selectively used syntactic operations (this was the time when J.J. Becher’s article on the universal language was republished with the subtitle “A programming approach from the year 1661”). From today’s point of view, these approaches were remarkably naïve.

The constant threat of the Cold War caused euphoria in government and military circles regarding the anticipated possibilities of MT. Until 1966, large amounts of money were spent in order to develop MT systems, mostly for the English-Russian language constellation. But with the publication of the famous Automatic Language Processing Advisory Committee (ALPAC) report, on behalf of the US administration, the CIA and the National Science Foundation, funding decreased immediately, due to the anticipation that MT would be neither useful nor seemed to provide any considerable advance or meaningful progress (Hutchins 1996). With the exception of some practically-oriented teams in Europe and the USA, research and development of MT expired.

In order to react to the results of the ALPAC report and the reduction of resources, the discourse became more classically scientific and tried to integrate linguistic knowledge on a broader basis, above all, semantic analysis. The results that were achieved by these approaches were promising and so, in the middle of the 1970s and in the course of the rapid development of technology and the introduction of the first personal computers, MT research was revitalized and headed to a continuously increasing popularity from the beginning of the 1980s.

Ten years later, however, in the middle of a syntax- and semantics-based MT system era, an IBM research group led by Peter F. Brown published an article (Brown et al. 1988), which suggested the return to statistical methods for a new MT system. Technological advances and the increased availability of language resources such as machine readable parallel corpora had changed the underlying conditions significantly. Thus, the results seemed very promising, especially regarding the extremely condensed time that would be necessary in order to create a state of the art MT system. As a result, the majority of MT research switched to statistics-based MT in the following years, as it was possible to create comparable MT systems without years of work and the expertise of a team of linguists. A few days of time and a very good bilingual corpus (“bitext”) were enough for a prototype.
Since then there has been a lot of development in statistical MT (smt). While the first systems were only trained to compare the probabilities of co-occurring words, later approaches tried to use groups of words instead, n-grams of different sizes. But pure smt seemed to hit its frontiers as there were several shortcomings and problems confusingly similar to those of rule-based mt systems and it seemed to be impossible to solve them by just using bigger corpora. Hence, the focus in mt research changed again. Actually, various trends were discussed simultaneously, e.g. smt for lesser resourced languages or example-based methods. Since the middle of the 2000s hybrid approaches that combine smt with linguistic knowledge (“context-based” or “knowledge-based” mt) were often seen and a new trend of the last years is to use corpora that are not parallel but at least comparable. One of the most recent interesting developments links back to the beginning of mt, i.e. as well to the famous memorandum by Warren Weaver as to the creators of secret languages mentioned above: After the success of Kevin Knight, Beáta Megyesi and Christiane Schaeferin in deciphering the Copiale codex (Knight et al. 2011), a German 18th century text with freemasonry background, the use of decipherment strategies in mt underwent a renaissance (Dou & Knight 2012).

2 Machine translation vs. computer-aided translation

An important distinction exists between mt and computer aided translation (cat). While the (today not that often announced) goal of mt is a so-called FAHQT (fully automatic high quality translation), in cat, tools and methods that assist human translators in the translation process are researched and developed. A well-known and widely used example of cat is the use of translation-memory systems (tms). A tms combines a user friendly translator front end with a database that saves all translations that have been done in a certain project (the translation memory), as well as a component that analyzes the units that are still to be translated for similarities with the ones in the translation memory. If a similarity beyond a certain threshold is found, the system enables the translator to modify the translation or, in cases of 100% similarity, just replaces it. Without a doubt, this kind of tool turned out to be impressively useful for translators in the domains of technical documentation or software localization. But of course cat is not designed for the translation of literary texts – the localization of video games seems to be situated in between these poles, as the texts are often combinations of technical and literary writing. Further components of a tms may involve mt for units with lower similarities, the automatic transliteration of numbers, dates
and other placeable elements, or the implementation of user-made dictionaries for terminology management (Seewald-Heeg 2002).

3 Typology

As described above, in the course of the years several approaches to the task of MT have evolved. Today, the most important ones are rule-based MT (RBMT) and SMT. Although they sometimes may still be understood as concurring approaches, the general view seems to be that both statistical as well as linguistic approaches may serve as tools in the machine translation toolkit that may be freely combined in order to improve results. In the next sections the two main representatives and the most common alternative approaches will be discussed (Jekat & Volk 2010).

3.1 Rule-based MT

RBMT today is often considered the “classical approach” and is still regularly used in commercial solutions, although with the withdrawal of Systrans “Babelfish”, the most popular representative of this approach has disappeared. The results of RBMT systems range from useful to hilarious, depending on the concrete text and its complexity with regard to common problems such as resolution of anaphors or lexical ambiguities, as well as the language pair and even the translation direction, as well as if the text is in a certain domain or contains special terminology (which is, given a prepared system, easier to process than general language).

A loose distinction between three levels of complexity of MT is common and the results, as well as the expenses, differ significantly: direct, transfer and interlingual translation.

The majority of RBMT systems is based on the transfer method which processes text in three successive steps:

1. Analysis
2. Transfer
3. Generation/Synthesis

3.1.1 Direct translation

MT systems that are based on direct translation simply replace words on a word by word basis and only rely on a parallel dictionary – so they do neither analysis nor transfer or generation. Often, positional changes are also included in order to
follow the word order of the target language. This approach is only of interest for a few possible application scenarios, but in general it may rather be considered a theoretical measure to demonstrate the benefits and advantages of a translation system. Historically, however, this is how the first systems were designed.

3.1.2 Transfer

Transfer translations define a set of rules ranging from morphology and syntax to semantics and context. Regarding the complexity of these rules there are no limits and tens of thousands of rules, combinations and exceptions may be coded. In practice, however, there seems to exist a point where higher complexity no longer yields better results. Instead, internal conflicts and contradicting rules produce arbitrary new errors. The majority of the existing RBMT systems can be considered a part of the transfer level.

3.1.3 Interlingua

The third level of complexity, Interlingua, is based on the utopia of a neutral language that would be able to represent all meaningful information of every utterance in every language. On the scale presented above for Interlingua systems there is no need to transfer from one language to another as they use a common metalanguage that is able to express the meaning of both in an unambiguous way. This universal language (“Interlingua”) would be the target language for every translation in the first place and in the next step it would be the source for the composition of meaning in the target language. Unfortunately, such a language has not yet been found, although several attempts have been made, beginning with the thoughts of Llull and Leibnitz, over to “semantic primitive” as in the work of Anna Wierzbicka (Wierzbicka 1996) and later on in experiments using constructed languages such as Esperanto or Lojban. Although this approach is considered optimal, it should be noted that even a perfect interlingua could make things potentially even more complicated due to its abstraction (Nicholas 1996).

3.2 Statistics-based

As mentioned above, the new rise of SMT began in 1988 when IBM researcher Peter Brown presented a new approach to MT that was solely based on statistic measures (Brown et al. 1988) at the second TMI conference of the Carnegie Mellon University. The basic principle is that every translation decision is made based on conditional probabilities, i.e. the probability that an event will occur when
another event is known to occur (or has already occurred). As a resource, instead of complex rule sets, large parallel corpora are needed.

3.2.1 Functioning

From a formal point of view, SMT works like this: In order to translate the arbitrary French sentence \(f \) to English, one can consider all possible and impossible English sentences \(e \) as potential translations of \(f \). But some are more probable translations than others. \(p(e|f) \) is the probability that \(e \) is a valid translation of \(f \). Philosophically speaking, we assume that the speaker of \(f \) initially conceived \(e \) and then internally translated \(e \) to \(f \) before uttering it. This construction is used to define the goal of SMT: Find the original sentence \(e \) which is the most probable translation. Please note that this assumption is similar to Weaver’s remark about understanding Chinese as English that is encrypted with the Chinese code.

This ideal situation is confronted with the impossibility of accessing all sentences of a language. Therefore, SMT works with approximations, so-called models. A bilingual aligned corpus defines the translation model that represents all possible translations between two languages, i.e. the larger the translation model, the better the expected results. Generally, every word is considered a potential translation of all the others, but the probability is the highest for those with which they are aligned.

An additional monolingual corpus of the target language is defined as the language model. It represents all valid sentences (or better, words or word sequences, which is a more operable abstraction) of a language. A search algorithm then determines the sentence by finding the highest product of the values sentence for validity (language model), word translation and word order (translation model). The result is the most probable translation.

The concrete probabilities used by the computer are estimated with Bayes’ Theorem.

\[
Pr(e|f) = \frac{Pr(e) \times Pr(f|e)}{Pr(f)}
\]

This formula can be reduced to the search of the maximum value of the terms \(Pr(e) \) (“probability that \(e \) has been said by someone”) and \(Pr(f|e) \) (“probability that someone would translate \(e \) to \(f \”)).

\[
\hat{e} = \arg \max \frac{Pr(e) \times Pr(f|e)}{e}
\]
Brown used the English-French parallel “Hansard” corpus, which consists of protocols from the Canadian parliament. Hence, this is where the example languages e and f derive from.

In the beginning SMT was mainly based on Brown’s original model, i.e. the target language utterances were derived according to Shannon’s Information Theorem out of a noisy channel translation model. But since 2002, when Och and Ney proposed a system in which the noisy channel was replaced by a discriminative log linear model (Och & Ney 2002), this approach became established as de facto standard as it allows to add additional features next to the language and translation model (Chiang 2012).

3.2.2 SMT types

The analysis of whole sentences makes little sense: How often is it possible to translate the exact same sentence that is already present in the translation model? As long as an SMT system does not have a corpus that indeed contains all (or at least almost all) possible sentences of a language, it is useful to reduce the considered unit. Therefore, there is the differentiation between word-based and phrase-based SMT.

3.2.2.1 Word-based SMT

The Word-based is the original approach and analyzes data on the level of simple lexical units. This means that one word in the source language has to correspond to one word in the target language. But unfortunately, it is quite often the case that a word has to be translated by more than one simple lexical unit, e.g. the English verb *slap* has to be translated to Spanish *dar una bofetada*. This is a construction that is possible to model with word-based SMT, but to perform a translation in the opposite direction, i.e. to translate from *dar una bofetada* to *slap*, is impossible. And as a matter of fact, so-called multi-word expressions (MWE) are by far the biggest part of the lexicon of any natural language – but that does not answer the question of which concepts are expressed through MWE in which language.

A related problem is that words may belong together although there are other words between them (e.g. so-called separable verbs in German). It is impossible to translate them correctly when the relation between them is not considered, as with e.g. the word *ab* in the construction *reiste ... ab*, derived from the verb *abreisen*, in the German sentence in example 1.
Ich reiste schon nach vierzehn Tagen wieder ab
I checked yet after fourteen days again out
“I left after only fourteen days”

This is especially problematic for languages with a strongly deviating syntax, e.g. in regard to the position of the finite verb.

3.2.2.2 Phrase-based SMT

Phrase-based SMT is an approach that tries to solve the problems mentioned above and is common for actual SMT systems. But the term ‘phrase’ does not indicate that the systems are able to identify, analyze or separate linguistically motivated phrases, e.g. noun phrases that may be composed of (complex) determiners and (compound) nouns. It rather refers to sequences of successive words (n-grams) that are derived from data.

The use of n-gram-based phrases in SMT addresses some of the shortcomings of word-based SMT: it is possible to translate one word with many and vice versa? Additionally, the broadened context enables better disambiguation algorithms. For example, it is impossible to decide whether English pretty should be translated as German schön or as ziemlich without knowing if the next word is flower or much, and thus it cannot be translated properly by word-based SMT but by phrase-based. Depending on the size of the word sequences (i.e. the n-gram window) it might also be possible to address problems regarding differences in word order or other syntactical phenomena. Hierarchical phrase-based SMT, also known as syntax-based SMT, is an advanced approach that allows the use of tree-based syntax data in the phrase-model (Koehn 2010).

3.2.3 Pros and cons of SMT

The great advantage of SMT is the possibility to create a working MT system without any knowledge of the source or target languages and their special features. As a matter of fact, the translation quality of an unadapted (i.e. pure SMT) system is generally weak (mainly depending on the corpora used). However, SMT systems are still comparable to RBMT systems and – in the view of decades of language rule modeling – a ground-breaking fast approach to proportionately robust MT systems, both in terms of time and money. So MT becomes within reach for languages that do not possess sufficient manpower to create a work-intensive RBMT system, but for which sufficient resources (i.e. bitexts) exist (which for instance is the case for most of the official languages of the European Union).
In terms of translation quality it can be stated that RBMT and SMT are similarly error-prone, but have some principal differences regarding the error types. Thus, one can easily observe that RBMT systems produce better sentences in terms of word order, syntax and coherence, but SMT systems produce better translations in terms of word choice, disambiguation, etc. Multi-word expressions or proverbs may also be translated without the effort of enumerating them beforehand (but only if they are present in sufficient number in the corpora to be identified statistically). Hence, one can state the basic philosophy of SMT as “bigger corpora means better results”.

However, the disadvantages of SMT are closely related to the advantages. Due to the fact that every translation is produced by opaque calculation processes over gigantic text quantities, it is nearly impossible to identify the potential causes of failures. Therefore, manual correction efforts for systematic errors are laborious and may often result in just adding better examples manually in order to change the statistical measure of a misinterpretation. Additionally, it is necessary to mention that for certain language pairs immense problems may arise, especially if they involve a fundamentally different structure in terms of inflection, word order, use of pronouns, number and kind of temporal forms, etc. For instance, the translation of German separable verbs often results in a missing finite verb which is essential to a sentence’s meaning. According to this, it becomes evident that the best translations are obtained when the SMT is created, trained and used for a special domain. The simple philosophy of SMT mentioned above also includes a disadvantage: If bigger corpora mean better results, this means that a corpus can be too small but never big enough.

3.2.4 Parallel, comparable and low-resource corpora

Another access point to improve SMT are the requirements of language data for training and translation purposes. As described above, the first approaches obliged the use of large parallel corpora, i.e. corpora in which every sentence is aligned to a translated version of itself – for every language pair. Nevertheless, large parallel corpora exist for many language pairs, the corpora generally consist of parliamentary proceedings and their professional translations or a similar text type, e.g. from the European Parliament or the already mentioned Canadian Hansard Corpus. Therefore, the use of political and economic terminology is highly overrepresented compared to corpora with standard language.

The creation of parallel corpora for other language domains constitutes a complex and laborious task even for languages with many speakers, but it is, as a third shortcoming, very hard to manage for lesser-resourced languages where
the corpus not only needs to be compiled or translated, but simply written in first place. Due to this, a new approach is working with so-called comparable corpora, i.e. corpora that are not parallel but related to each other, such as Wikipedia articles. Changes in the processing of the translation model in another approach resulted in the use of larger monolingual corpora and smaller parallel ones. Bridging through similar, but better-resourced languages, e.g. in the case of using Spanish as a bridge to translate English to Catalan, is also a way to deal with this.

3.3 Hybrid systems

Hybrid approaches try to combine the advantages of several systems. This is especially the case for SMT: There are numerous articles describing the combination of SMT with syntactic preprocessing, semantic disambiguation or similar applications. Often the combination of approaches broadens the scope of research possibilities for unfavorable language pairs, sometimes due to strong divergence in terms of inflection and word order, or due to the fact that one or both of the languages in question are lesser-resourced ones. But although there has been quite a lot of effort in this research direction and most of the approaches have indeed improved the translation quality (at least a bit), there does not seem to be a breakthrough in sight.

3.4 Perspectives

MT research has experienced some highs and lows in its history. Although a FAHQT is no longer the single goal of MT, the last years have been characterized by increasing MT research funding and diversification of the topics of interest. This may be due to the fact that freely available state of the art MT systems, e.g. by Google or Microsoft, have demonstrated the high usability of MT, even though the systems are not perfect.

The combination of approaches to creating hybrid systems, e.g. the use of linguistic information and statistical data, has become one of the most researched fields in MT over the last decade. The integration of syntax into phrase-based SMT systems has reanimated the search for the right kind of linguistic data (e.g. multi-word expressions, linguistically motivated phrases, etc.) to be integrated as well as the kind of preprocessing that is needed for it (syntax trees, support of variables, etc.). This way, the type and state of resources are rated more appropriately than in the beginning of SMT research. This is also relevant in the context of domain adaption, i.e. the identification of data that are necessary to represent a
closed domain and the expansion to new fields as it turns out that the automatic translation of specialized domains is more reliable.

Recently there has been a shift from the “traditional” language pairs in MT, namely English, Russian, German, French, Spanish and in the last years also Chinese and Japanese, to lesser-resourced ones. Especially the expansion of the European Union has been a starting point for growing research in this area as there are speakers of 23 languages that demand participation at every level and in their mother tongue for a growing amount of texts and offers such as ecommerce. The automatic translation between language pairs that do not include English also reinforces attempts to deal with complex problems of morphology.

Another topic of still growing interest is the automatic evaluation of translations – either with the focus on metrics that underline the currently standard metric BLEU (e.g. by using syntax information) or with the focus on reusing good translations as additional training data.

References

